

# ASX Announcement

ASX: DYL

05 April 2012

# ENCOURAGING ONGOLO AND RECONNAISSANCE DRILLING RESULTS

### **KEY POINTS**

- The results of XRF Fusion chemical assays on samples from the high grade intercepts made at Ongolo and from reconnaissance lines (as reported in ASX Release dated 23 February 2012) have been received.
- These results have confirmed a new discovery on a reconnaissance line approximately 2 kilometres south of Ongolo:
  - ALAR970 9 metres at 709 ppm U<sub>3</sub>O<sub>8</sub> from 216 metres
  - o ALAR978 6 metres at 1,430 ppm U<sub>3</sub>O<sub>8</sub> from 171 metres
  - ALAR980 3 metres at 1,071 ppm U<sub>3</sub>O<sub>8</sub> from 156 metres
- Selected Ongolo infill resource drilling results include:
  - ALAR426 4 metres at 1,630 ppm U<sub>3</sub>O<sub>8</sub> from 45 metres
  - ALAR969 10 metres at 551 ppm U<sub>3</sub>O<sub>8</sub> from 175 metres
  - ALAR990 18 metres at 499 ppm U<sub>3</sub>O<sub>8</sub> from 297 metres
- Infill resource drilling is continuing at Ongolo as is reconnaissance drilling southwest from Ongolo towards MS7, as well as at MS7.
- Results of XRF Fusion chemical assays on samples from the high grade intercepts at the MS7 deposit will be available next week.

Advanced stage uranium explorer Deep Yellow Limited (ASX: DYL) is pleased to announce XRF Fusion chemical assay results from resource and reconnaissance drilling conducted by its wholly owned subsidiary Reptile Uranium Namibia (Pty) Ltd (RUN) from the Ongolo deposit area (Figure 1). The results, which were foreshadowed in an ASX Release dated 23 February 2012, are from the 2012 Drill Programme which commenced in mid-January.

Deep Yellow Managing Director Greg Cochran said that he was very pleased with the results. "We have come to expect these results from Ongolo but the confirmation of another new discovery, so close to Ongolo, is particularly exciting."

The 2012 drill programme at Ongolo is primarily designed around increasing the size and confidence of the resource as well as testing for lateral and depth extensions to the high grade zones delineated last year whilst the objective of the reconnaissance drilling is to find new satellite deposits for the Omahola Project (Figures 2 and 3).





Figure 1: 2012 Drill Programme – Ongolo-MS7 Area

## Reconnaissance Drilling

First results from the reconnaissance drill programme near to the Ongolo deposit have returned high grade uranium mineralisation associated with a well defined Alaskite-marble contact zone. (In 2010 a single hole returned a best value of 4 metres at 459 ppm U<sub>3</sub>O<sub>8</sub> from 96 metres during initial reconnaissance drilling in the area, as per ASX Release dated 14 September 2010).

Infill and extension drilling along the marble contact zone (Figure 3) returned a number of high grade intersections at depth which will require follow-up diamond drilling to fully evaluate the structural setting of this new mineralised zone. The cluster of anomalous values along the marble contact zone centred on Line 5 will initially be followed along strike to Line 9 (1.7 kilometres).

The latest available chemical assay results are given in Appendix 1, whilst selected significant results include:

- ALAR970 9 metres at 709 ppm U<sub>3</sub>O<sub>8</sub> from 216 metres
- ALAR978 6 metres at 1,430 ppm U<sub>3</sub>O<sub>8</sub> from 171 metres
- ALAR980 3 metres at 1,071 ppm U<sub>3</sub>O<sub>8</sub> from 156 metres

### Ongolo Alaskite Deposit

Fusion XRF chemical assays have also been received for the 'infill' drill programme in the centralwest of the Ongolo deposit. The results provide continuity between 'resource blocks' outlined by the 2011 drill programme and should serve to improve the JORC classification.





Figure 2: Location Map showing Ongolo Infill and Reconnaissance Drilling

The latest available chemical assay results are given in Appendix 1, whilst selected significant results include:

- ALAR957 7 metres at 412 ppm U<sub>3</sub>O<sub>8</sub> from 181 metres
- and 4 metres at 406 ppm U<sub>3</sub>O<sub>8</sub> from 208 metres
- ALAR961 9 metres at 404 ppm U<sub>3</sub>O<sub>8</sub> from 193 metres
- ALAD969 10 metres at 551 ppm U<sub>3</sub>O<sub>8</sub> from 175 metres
- ALAD990 18 metres at 499 ppm U<sub>3</sub>O<sub>8</sub> from 297 metres
- ALAD992 6 metres at 462 ppm U<sub>3</sub>O<sub>8</sub> from 241 metres





Figure 3: Regional aeromagnetic image showing the Ongolo outline and 2012 Drill Programme. (The magnetic highs (red-white) represent marble/skarn units within the mineralised alaskites)

#### Ends



Greg Cochran Managing Director

Media Annette Ellis / Greg Galton Phone: +61 8 9286 6999 Email: info@deepyellow.com.au

Phone: +61 8 6314 6302 Email: aellis@purplecom.com.au ggalton@purplecom.com.au

For further information on the Company and its projects - visit the website at www.deepyellow.com.au



#### **About Deep Yellow Limited**

Deep Yellow Limited is an ASX-listed, advanced stage uranium exploration company with extensive operations in the southern African nation of Namibia and in Australia. It also has a listing on the Namibian Stock Exchange.

Deep Yellow's primary focus is in Namibia where its operations are conducted by its 100% owned subsidiary Reptile Uranium Namibia (Pty) Ltd (RUN). Its flagship is the Omahola Project currently under Pre-Feasibility Study with concurrent resource drill-outs on the high grade Ongolo Alaskite – MS7 trend. It is also evaluating a stand-alone project for its Tubas-TRS uranium deposit utilising physical beneficiation techniques it successfully tested in 2011.

Additionally, its Shiyela Magnetite deposit, located just 45 kilometres from the Namibian port of Walvis Bay, is the subject of ongoing evaluation.

In Australia the Company owns the Napperby Uranium Project and numerous exploration tenements in the Northern Territory and in the Mount Isa District in Queensland.

#### **Compliance Statement**

The information in this report that relates to Exploration Results and to Mineral Resources or Ore Reserves is based on information compiled by Dr Leon Pretorius a Fellow of The Australasian Institute of Mining and Metallurgy. Dr Pretorius has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr Pretorius consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.



|                               | mE           | mN        | Azi | TD  | Dip | Depth (m) |     | Interval | SS Fusion      |       |  |  |
|-------------------------------|--------------|-----------|-----|-----|-----|-----------|-----|----------|----------------|-------|--|--|
| Hole                          |              |           |     |     |     | From      | То  | (m)      | εOεUo<br>(mαα) | GTM   |  |  |
| Ongolo Infill Drill Programme |              |           |     |     |     |           |     |          |                |       |  |  |
| ALAR426                       | 497945       | 7482095   | 135 | 211 | -60 | 45        | 49  | 4        | 1,630          | 6,520 |  |  |
| ALAR957                       | 498320       | 7482920   | 135 | 226 | -60 | 77        | 79  | 2        | 497            | 994   |  |  |
| and                           |              |           |     |     |     | 95        | 97  | 2        | 525            | 1,050 |  |  |
| and                           |              |           |     |     |     | 98        | 99  | 1        | 418            | 418   |  |  |
| and                           |              |           |     |     |     | 181       | 188 | 7        | 412            | 2,884 |  |  |
| and                           |              |           |     |     |     | 208       | 212 | 4        | 406            | 1,624 |  |  |
| ALAR958                       | 498245       | 7482995   | 135 | 250 | -60 | 109       | 111 | 2        | 544            | 1,088 |  |  |
| and                           |              |           |     |     |     | 131       | 132 | 1        | 583            | 583   |  |  |
| and                           |              |           |     |     |     | 153       | 155 | 2        | 413            | 826   |  |  |
| ALAR961                       | 497713       | 7482087   | 135 | 181 | -60 | 193       | 202 | 9        | 404            | 3,636 |  |  |
| ALAR963                       | 498275       | 7482725   | 135 | 181 | -60 | 153       | 156 | 3        | 442            | 1,326 |  |  |
| ALAR965                       | 498358       | 7482883   | 135 | 220 | -60 | 176       | 179 | 3        | 419            | 1,257 |  |  |
| ALAR969                       | 497795       | 7482245   | 135 | 261 | -60 | 175       | 185 | 10       | 551            | 5,510 |  |  |
| and                           |              |           |     |     |     | 210       | 212 | 2        | 455            | 910   |  |  |
| and                           |              |           |     |     |     | 233       | 234 | 1        | 422            | 422   |  |  |
| ALAR973                       | 499486       | 7482775   | 135 | 265 | -60 | 169       | 171 | 2        | 475            | 950   |  |  |
| ALAR974                       | 498851       | 7482809   | 135 | 500 | -60 | 155       | 156 | 1        | 515            | 515   |  |  |
| and                           |              |           |     |     |     | 160       | 162 | 2        | 426            | 852   |  |  |
| and                           |              |           |     |     |     | 175       | 176 | 1        | 407            | 407   |  |  |
| ALAR975                       | 498560       | 7482560   | 135 | 500 | -60 | 319       | 320 | 1        | 542            | 542   |  |  |
| and                           |              |           |     |     |     | 350       | 353 | 3        | 411            | 1,233 |  |  |
| and                           |              |           |     |     |     | 356       | 360 | 4        | 410            | 1,640 |  |  |
| and                           |              |           |     |     |     | 362       | 366 | 4        | 494            | 1,976 |  |  |
| and                           |              |           |     |     |     | 413       | 414 | 1        | 411            | 411   |  |  |
| and                           |              |           |     |     |     | 420       | 422 | 2        | 437            | 874   |  |  |
| ALAR976                       | 498283       | 7482957   | 135 | 259 | -60 | 191       | 194 | 3        | 438            | 1,314 |  |  |
| ALAR989                       | 497774       | 7482146   | 135 | 220 | -60 | 131       | 132 | 1        | 435            | 435   |  |  |
| and                           |              |           |     |     |     | 181       | 183 | 2        | 536            | 1,072 |  |  |
| ALAR990                       | 497757       | 7482282   | 135 | 316 | -60 | 226       | 227 | 1        | 411            | 411   |  |  |
| and                           |              |           |     |     |     | 297       | 315 | 18       | 499            | 8,982 |  |  |
| ALAR991                       | 497818       | 7482342   | 135 | 271 | -60 | 253       | 254 | 1        | 473            | 473   |  |  |
| ALAR992                       | 497840       | 7482440   | 135 | 261 | -60 | 241       | 247 | 6        | 462            | 2,772 |  |  |
| Reconnaissa                   | nce Drilling | Programme | •   |     |     |           |     |          |                |       |  |  |
| ALAR970                       | 499738       | 7480662   | 135 | 240 | -60 | 216       | 225 | 9        | 709            | 6,381 |  |  |
| ALAR971                       | 499668       | 7480733   | 135 | 260 | -60 | 163       | 165 | 2        | 454            | 908   |  |  |
| ALAR978                       | 499835       | 7480685   | 135 | 250 | -60 | 171       | 177 | 6        | 1,430          | 8,580 |  |  |
| ALAR979                       | 499760       | 7480760   | 135 | 250 | -60 | 66        | 68  | 2        | 500            | 1,000 |  |  |
| and                           |              |           |     |     |     | 132       | 134 | 2        | 465            | 930   |  |  |
| ALAR980                       | 499685       | 7480835   | 135 | 250 | -60 | 156       | 159 | 3        | 1,071          | 3,213 |  |  |
| ALAR997                       | 498388       | 7479612   | 135 | 223 | -60 | 149       | 152 | 3        | 498            | 1,494 |  |  |

| Appendix 1: | Fusion XRF | - Chemical | Assay | Results - | April 2012 |
|-------------|------------|------------|-------|-----------|------------|
|-------------|------------|------------|-------|-----------|------------|

Notes: TD is total depth of hole;  $U_3O_8$  is a chemical assay by Fusion XRF. GTM is grade thickness metre and is calculated by multiplying the interval (m) x  $U_3O_8$  (ppm)

Values of approximately 400 ppm  $U_3O_8$  are deemed to be significant by DYL in this environment and therefore lower average values are not reported.