

22 May 2017

ASX Market Announcements Australian Securities Exchange 20 Bridge Street SYDNEY NSW 2000

Dear Sir/Madam,

NEW URANIUM DISCOVERY CONFIRMED AT TUMAS 3, NAMIBIA

Key Points

OF DEFSONAI USE ON!

- Drilling at Tumas 3 has extended uranium mineralisation over a 1.9km strike and remains open to the west and east
- High drilling success rate with 128 out of 144 holes (100m by 100m spacing) returning positive results including:
 - o 12m at 1,239ppm eU₃O₈ from 5.1m
 - o 12m at 1,163ppm eU₃O₈ from 6.1m
 - 14m at 999ppm eU₃O₈ from 6.1m
- Mineralisation is calcrete associated and hosted in palaeochannels, similar to the Langer Heinrich uranium mine located 30km to the north east
- Planned 10,000m drill program approximately 40% complete and maiden resource for Tumas 3 discovery expected in the September quarter

Deep Yellow Limited (**DYL**) is pleased to report continued encouraging drilling results from the 10,000m drilling program currently underway on EPL3496, held by DYL's wholly-owned subsidiary Reptile Uranium Namibia (Pty) Ltd (**RUN**) (Figure 1).

The ongoing drilling of the Tumas 3 target zone has delineated additional uranium mineralisation, significantly extending the discovery since it was initially reported in April (see DYL ASX announcement 19 April 2017). Of the 144 vertical holes drilled for 3611m to 15 May 2017, 128 of these holes returned positive results – a very significant 88.9% success rate. This drilling has extended the palaeochannel associated mineralisation by 58% to 1.9km from the 1.2km previously reported. The Tumas 3 mineralisation still remains open, strongly justifying continued drilling and sourcing a second drilling rig to accelerate the program. Drilling is being conducted on a 100m x 100m spacing and on program completion is considered will be of sufficient resolution to estimate a maiden inferred resource in the September quarter.

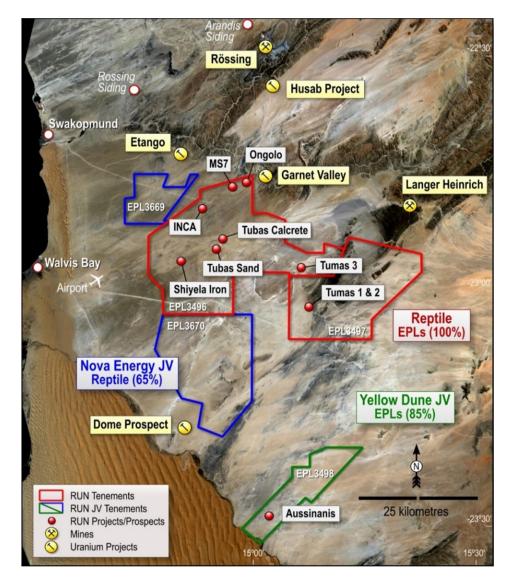
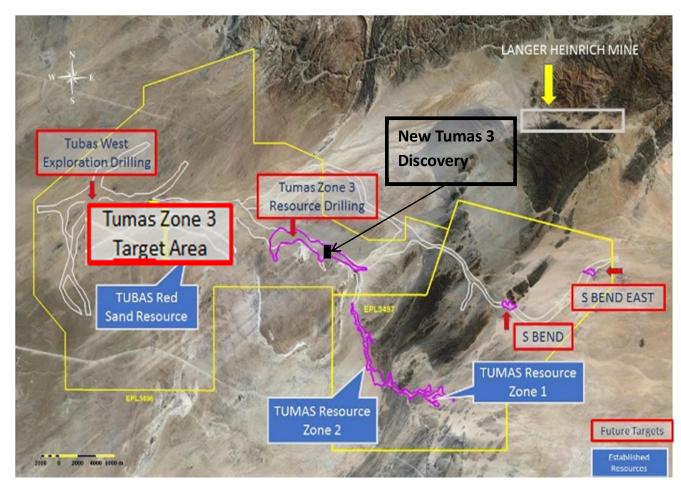



Figure 1: Regional location showing Reptile EPLs, uranium deposits and prospects

This emerging discovery occurs as a distinct mineralised zone separate from the uranium resources the Company has identified within these palaeochannels in its Tumas 1 & 2 and Tubas Red Sands/Calcrete deposits (see Figures 1 and 2). The palaeochannels occurring away from these deposits have only been sparsely drilled along widely spaced regional lines, leaving opportunity for both continuing the extension of Tumas 3 and for further discoveries within what can now be seen as an inadequately tested, highly prospective palaeochannel of 100km in length.

Figure 2: EPLs 3496, 3497 showing Tumas 3, all previous drill hole and main prospect locations over palaeochannels.

The mineralisation at Tumas is essentially blind in nature with no surface radiometric expression. Apart from the enormous benefit gained from the now more accurately defined palaeochannel systems as outlined in Figure 2, resulting from the re-interpretation of the existing airborne geophysical data to concentrate the exploration effort, actual discovery has only been possible by drilling.

eU₃O₈ ppm Determinations

-Of personal use only

In the Company's 19 April 2017 announcement advising of the Tumas 3 discovery, the mineralisation was referenced by the down-hole gamma counts per second (cps) giving only a semi-quantitative indication of the uranium presence. It was indicated in that release the eU_3O_8 determinations would follow once all necessary calibration factors were collected and verified for the conversion of cps to uranium grade.

The down-hole gamma data for 116 of the 144 holes drilled to 15 May 2017 have now been converted to equivalent uranium oxide values (eU_3O_8 ppm) and this work is confirming the ongoing encouraging results and the existence of an extensive mineralised system. The drilling has delineated a zone of continuous uranium mineralisation (see drill data results

with eU_3O_8 determinations Table 1 in Appendix 1) with equivalent uranium grades ranging from 101ppm to 0.71% eU_3O_8 over 1m occurring within the 1.9km section tested to date of the 3km Tumas 3 target zone which the DYL is planning to drill in this current program. The mineralisation defined to date remains open to the west, north-west and south-east (see Figure 3). Mineralisation has been defined as anything having a grade thickness (GT) of greater than 100ppm eU_3O_8 over a 1m interval as determined using a fully calibrated Auslog gamma down-hole logging unit. These GT values (eU_3O_8 ppm x thickness in metres) are shown in contoured form in Figure 3 and highlight the continuous, open nature of the uranium mineralisation. The results to date shows a robust mineralisation well within the norms of this style of uranium occurrence with average grade using a 100ppm eU_3O_8 cut-off being 358ppm and at a 200ppm eU_3O_8 cut-off rising to an average grade of 527ppm per metre comparing very favourably with the average grades of Langer Heinrich at similar cut-off grades.

The mineralised channel system that has been identified varies from 200m to 900m in width and ranges in thickness from 1m to 12m occurring at depths varying between 3m to 19m.

Analysis

HOLDELSONAI USE ON!

The drilling continues to show that the Tumas 3 mineralisation is not confined to one simple, single channel but rather is associated with a complex palaeo-drainage system containing numerous intermingling channels heading westward toward the ocean. The drilling results indicate that the mineralised portion of the channel widens toward the west.

The original plan for the first phase of the current drilling program was to test a 3km section (to date only 1.9km tested) of the prospective palaeochannel at Tumas 3. However, should the strength and continuity of uranium mineralisation persist beyond the current 3km target zone, then this drilling program will be extended immediately to the west and east to delineate the full potential of what is emerging as a very significant exploration target. A second drill rig is currently being sourced in order to accelerate the current program. Drilling planned on the other targets (S Bend and S Bend East) that have been defined will accordingly need to be postponed.

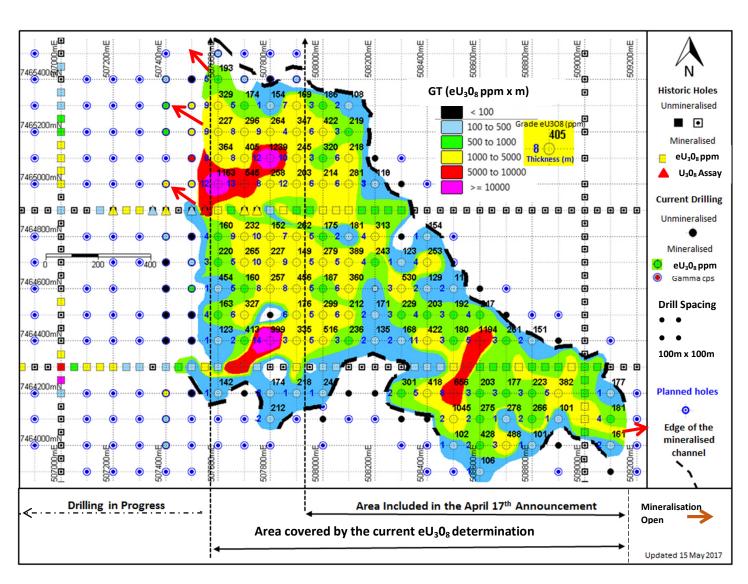
Appendix 1 lists all 144 drill holes completed from commencement on 21 March 2017 to 15 May 2017 in Tables 1 and 2. Table 1 lists the 116 holes drilled to 3 May 2017 that have undergone eU_3O_8 determination and show depth and coordinates of the holes along with eU_3O_8 ppm values and the thickness of the mineralisation as calculated from down-hole gamma logging. Table 2 in Appendix 1 shows the additional 28 holes drilled between 3 May 2017 and 15 May 2017 for which eU_3O_8 determinations have not yet been calculated and uranium values are given semi-quantitatively in gamma counts per second (cps) from the down hole gamma logging also showing drill-hole locations, level of anomalous down hole gamma cps and thickness for each anomalous zone.

Drill hole cross sections (see Figures 4 and 5) show the continuous, flat lying nature of the uranium mineralisation and also the variability and complexity of the palaeochannel topography.

Conclusion

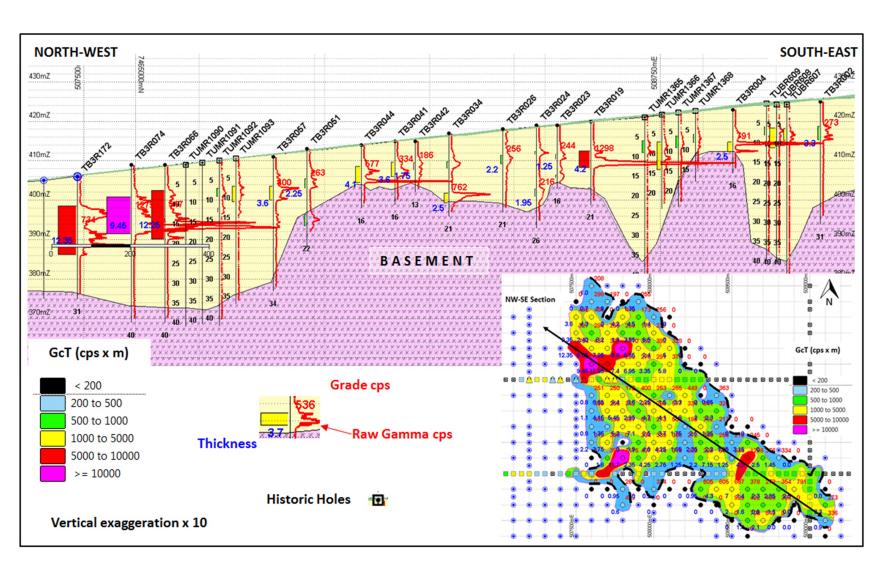
The continuing positive drilling results from Tumas 3 again reinforce the strongly held belief of the new management and technical team that the palaeochannels occurring within the RUN held tenements present a valid and significant regional exploration target. These palaeochannels are showing they have previously been inadequately tested to the degree required, as evidenced by the discovery that has been made at Tumas 3. These new positive results, together with approximately 100km of prospective palaeo-drainage identified as still to be tested, provide management with increasing confidence that the existing uranium resource base within the Reptile project area can be increased.

Yours faithfully


JOHN BORSHOFF
Managing Director/CEO

Deep Yellow Limited

Competent Persons' Statement


Exploration Competent Persons' Statement

The information in this report as it relates to exploration results was compiled by Mr Martin Hirsch, a Competent Person who is a Member of the Institute of Materials, Mining and Metallurgy (IMMM) in the UK. Mr Hirsch, who is currently the Exploration Manager for Reptile Uranium Namibia (Pty) Ltd, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Hirsch consents to the inclusion in this announcement of the exploration results and supporting information in the form and context in which it appears.

For personal use only

Figure 3: Tumas 3 - Drill Hole Location: Showing completed drill holes in solid colours reflecting eU₃O₀ppm x m thickness (GT) contours

For personal use only

Figure 4: Tumas 3 – Long Section (drill hole spacing 140m) from 7465200N/507500E to 7463900N/509100E

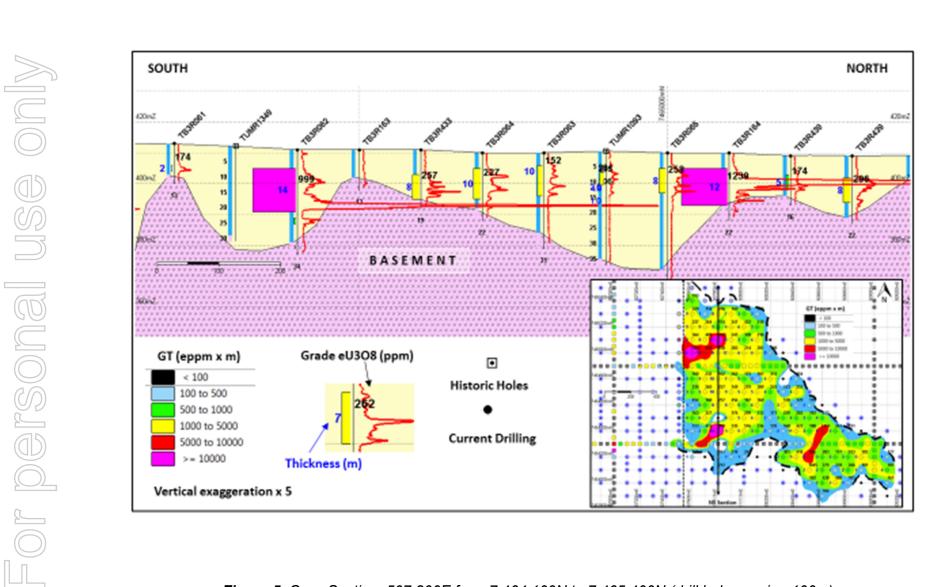


Figure 5: Coss Section: 507,800E from 7,464,100N to 7,465,400N (drill hole spacing 100m)

TABLE 1 - Drill Hole Status: with the eU_3O_8 Determinations (116 holes drilled up to 3 May 2017)

100 ppm	eU₃O ₈ cı	ut-off over 1	.m					
Hole ID	From (m)	Thickness (m)	eU₃O ₈ (ppm)	eU₃O ₈ max (over 1m)	Easting	Northing	RL	TD (m)
TB3R001	7.0	1	177	177	509100	7464200	426	26
TB3R002	6.0	4	181	198	509100	7464100	425	31
TB3R003	5.0	2	161	174	509105	7464000	425	10
TB3R004	6.1	5	382	1389	508900	7464200	424	16
TB3R005	6.1	1	101	101	508900	7464100	424	36
	9.1	1	133	133				
TB3R006	No mir	neralisation a	above 100	ppm cut-off	508900	7464000	423	21
TB3R007	No mir	neralisation a	above 100	ppm cut-off	508903	7464399	424	26
TB3R008	6.0	3	223	352	508800	7464200	422	11
TB3R009	5.0	2	266	324	508800	7464100	422	16
TB3R010	5.0	1	101	101	508800	7464000	422	51
TB3R011	7.0	2	151	153	508800	7464400	422	26
	14.0	2	211	245				
TB3R012	7.1	3	261	335	508705	7464411	421	36
TB3R013	No mir	neralisation a	bove 100	ppm cut-off	508700	7464500	421	41
TB3R014	5.1	3	177	252	508698	7464197	421	11
TB3R015	5.0	1	278	228	508700	7464100	420	11
	8.0	1	447	447				
TB3R016	4.0	3	488	892	508699	7464000	421	41
TB3R017	4.1	3	203	293	508608	7464205	420	16
	11.1	1	172	172				
TB3R018	3.1	2	275	323	508607	7464101	420	11
TB3R019	7.0	5	1194	4663	508600	7464400	420	21
TB3R020	7.0	1	216	216	508594	7464500	420	40
	15.0	4	217	302				
TB3R021	5.0	8	656	2001	508500	7464200	419	16
TB3R022	4.0	2	1045	1198	508500	7464100	419	11
TB3R023	6.0	3	180	233	508500	7464400	419	16
	12.0	2	172	177				
TB3R024	6.1	2	198	257	508500	7464500	419	26
	16.1	3	192	232				

(m) (m) (ppm) (over 1m) 3 3 TB3R025 0.1 11 422 2443 508398 7464400 4 TB3R026 5.1 4 203 294 508400 7464500 4 TB3R027 6.1 2 129 146 508400 7464600 4 TB3R028 5.1 4 253 413 508400 7464700 4 TB3R029 8.1 1 154 154 508400 7464800 4 TB3R030 5.1 5 418 517 508398 7464200 4 TB3R031 5.1 2 301 441 508302 7464200 4 TB3R032 6.1 2 168 191 508307 7464400 4 TB3R033 5.1 3 229 285 508303 7464500 4 TB3R034 6.2 3 202 317 508300	417 21 417 26	DI						
TB3R026 5.1 4 203 294 508400 7464500 4 TB3R027 6.1 2 129 146 508400 7464600 4 TB3R028 5.1 4 253 413 508400 7464700 4 TB3R029 8.1 1 154 154 508400 7464800 4 TB3R030 5.1 5 418 517 508398 7464200 4 TB3R031 5.1 2 301 441 508302 7464200 4 TB3R032 6.1 2 168 191 508307 7464400 4 TB3R033 5.1 3 229 285 508303 7464500 4 TB3R034 6.2 3 202 317 508300 7464600 4 TB3R034 6.2 3 202 317 508300 7464600 4 TB3R034 6.2 3 530 1012 508300 7464600 4	417 21 417 26	IVE	Easting Northing					Hole ID
TB3R027 6.1 2 129 146 508400 7464600 4 TB3R028 5.1 4 253 413 508400 7464700 4 TB3R029 8.1 1 154 154 508400 7464800 4 TB3R030 5.1 5 418 517 508398 7464200 4 TB3R031 5.1 2 301 441 508302 7464200 4 TB3R032 6.1 2 168 191 508307 7464400 4 TB3R033 5.1 3 229 285 508303 7464500 4 10.1 1 281 281 281 13.1 1 103 103 103 TB3R034 6.2 3 202 317 508300 7464600 4 15.2 3 530 1012 1012 1012 1012 1012	417 26	417	508398 7464400	2443	422	11	0.1	TB3R025
TB3R028 5.1 4 253 413 508400 7464700 4 TB3R029 8.1 1 154 154 508400 7464800 4 TB3R030 5.1 5 418 517 508398 7464200 4 TB3R031 5.1 2 301 441 508302 7464200 4 TB3R032 6.1 2 168 191 508307 7464400 4 TB3R033 5.1 3 229 285 508303 7464500 4 10.1 1 281 281 281 13.1 1 103 103 103 TB3R034 6.2 3 202 317 508300 7464600 4 15.2 3 530 1012 1012 1012 1012		417	508400 7464500	294	203	4	5.1	TB3R026
TB3R029 8.1 1 154 154 508400 7464800 4 TB3R030 5.1 5 418 517 508398 7464200 4 TB3R031 5.1 2 301 441 508302 7464200 4 TB3R032 6.1 2 168 191 508307 7464400 4 TB3R033 5.1 3 229 285 508303 7464500 4 10.1 1 281 281 281 281 13.1 1 103 103 TB3R034 6.2 3 202 317 508300 7464600 4 15.2 3 530 1012 1012 1012 1012 1012	447	417	508400 7464600	146	129	2	6.1	TB3R027
TB3R030 5.1 5 418 517 508398 7464200 4 TB3R031 5.1 2 301 441 508302 7464200 4 TB3R032 6.1 2 168 191 508307 7464400 4 TB3R033 5.1 3 229 285 508303 7464500 4 10.1 1 281 281 281 13.1 1 103 103 TB3R034 6.2 3 202 317 508300 7464600 4 15.2 3 530 1012 4 4 4	417 41	417	508400 7464700	413	253	4	5.1	TB3R028
TB3R031 5.1 2 301 441 508302 7464200 4 TB3R032 6.1 2 168 191 508307 7464400 4 TB3R033 5.1 3 229 285 508303 7464500 4 10.1 1 281 281 281 281 281 3 103 103 103 7464600 4	417 26	417	508400 7464800	154	154	1	8.1	TB3R029
TB3R032 6.1 2 168 191 508307 7464400 4 TB3R033 5.1 3 229 285 508303 7464500 4 10.1 1 281 281 13.1 1 103 103 TB3R034 6.2 3 202 317 508300 7464600 4 15.2 3 530 1012	417 30	417	508398 7464200	517	418	5	5.1	TB3R030
TB3R033 5.1 3 229 285 508303 7464500 4 10.1 1 281 281 13.1 1 103 103 TB3R034 6.2 3 202 317 508300 7464600 4 15.2 3 530 1012	417 51	417	508302 7464200	441	301	2	5.1	TB3R031
10.1 1 281 281 13.1 1 103 103 TB3R034 6.2 3 202 317 508300 7464600 4 15.2 3 530 1012	417 11	417	508307 7464400	191	168	2	6.1	TB3R032
13.1 1 103 103 TB3R034 6.2 3 202 317 508300 7464600 4 15.2 3 530 1012	416 16	416	508303 7464500	285	229	3	5.1	TB3R033
TB3R034 6.2 3 202 317 508300 7464600 4 15.2 3 530 1012				281	281	1	10.1	
15.2 3 530 1012				103	103	1	13.1	
	416 21	416	508300 7464600	317	202	3	6.2	TB3R034
TB3R035 7.0 1 123 123 508298 7464700 4				1012	530	3	15.2	
1.55.1655 7.6 1 125 125 300236 7404700 4	416 26	416	508298 7464700	123	123	1	7.0	TB3R035
TB3R036 No mineralisation above 100 ppm cut-off 508300 7464800 4	416 41	416	508300 7464800	ppm cut-off	bove 100	neralisation a	No mir	TB3R036
TB3R037 No mineralisation above 100 ppm cut-off 508300 7465000 4	416 26	416	508300 7465000	ppm cut-off	above 100	neralisation a	No mir	TB3R037
TB3R038 6.1 1 110 110 508200 7465000 4	415 16	415	508200 7465000	110	110	1	6.1	TB3R038
8.1 3 118 183				183	118	3	8.1	
TB3R039 No mineralisation above 100 ppm cut-off 508200 7465100 4	415 35	415	508200 7465100	ppm cut-off	above 100	neralisation a	No mir	TB3R039
TB3R040 5.1 4 313 459 508195 7464798 4	415 37	415	508195 7464798	459	313	4	5.1	TB3R040
TB3R041 5.1 4 243 358 508200 7464700 4	415 16	415	508200 7464700	358	243	4	5.1	TB3R041
TB3R042 No mineralisation above 100 ppm cut-off 508199.9 7464600 4	415 13	415	508199.9 7464600	ppm cut-off	bove 100	neralisation a	No mir	TB3R042
TB3R043 6.1 2 181 246 508100 7464801 4	414 31	414	508100 7464801	246	181	2	6.1	TB3R043
TB3R044 5.1 5 389 1108 508100 7464700 4	414 16	414	508100 7464700	1108	389	5	5.1	TB3R044
TB3R045 5.1 6 281 447 508103 7465000 4	413 19	413	508103 7465000	447	281	6	5.1	TB3R045
TB3R046 5.1 6 218 507 508100 7465100 4	413 16	413	508100 7465100	507	218	6	5.1	TB3R046
TB3R047 4.1 3 236 306 508103 7464399 4	414 13	414	508103 7464399	306	236	3	4.1	TB3R047
TB3R048 No mineralisation above 100 ppm cut-off 508098.3 7464200 4	415 7	415	508098.3 7464200	ppm cut-off	above 100	neralisation a	No mir	TB3R048
TB3R049 6.1 1 241 241 508000 7464200 4	414 16	414	508000 7464200	241	241	1	6.1	TB3R049
TB3R050 9.1 5 516 1179 507999 7464400 4	413 16	413	507999 7464400	1179	516	5	9.1	TB3R050
TB3R051 5.1 5 175 240 507996 7464801 4	413 22	413	507996 7464801	240	175	5	5.1	TB3R051
16.1 4 219 343	+12 22			343	219	4	16.1	
TB3R052 4.1 5 279 414 508000 7464700 4	+12 22							

100 ppm 6	eU₃O ₈ cı	ut-off over 1	.m					
Hole ID	From (m)	Thickness (m)	eU₃O ₈ (ppm)	eU ₃ O ₈ max (over 1m)	Easting	Northing	RL	TD (m)
TB3R053	4.1	6	214	287	508000	7465000	412	31
	12.1	1	126	126				
TB3R054	5.1	3	320	557	508000	7465100	412	13
TB3R055	4.1	12	203	364	507899	7465000	411	40
TB3R056	4.1	10	245	655	507897	7465101	411	28
TB3R057	4.1	7	262	453	507900	7464800	411	34
	16.1	1	100	100				
TB3R058	4.1	9	149	212	507900	7464700	412	28
TB3R059	15.1	3	335	396	507900	7464400	413	28
TB3R060	6.1	1	218	218	507899	7464199	413	19
TB3R061	7.1	2	174	236	507800	7464200	412	13
TB3R062	6.1	14	999	5459	507799	7464400	411	34
	22.1	2	279	289				
	31.1	1	108	108				
TB3R063	4.1	10	152	312	507800	7464800	410	31
TB3R064	5.1	10	227	597	507800	7464700	411	22
	17.1	1	106	106				
TB3R065	5.1	8	258	386	507799	7465000	410	43
TB3R066	6.1	13	545	2367	507698	7465000	409	40
TB3R067	6.1	9	232	404	507700	7464800	409	28
TB3R068	7.1	5	265	402	507700	7464700	410	22
	14.1	2	106	107				
TB3R069	21.2	2	413	463	507700	7464400	410	28
TB3R070	No mir	neralisation a	above 100	ppm cut-off	507700	7464200	411	31
TB3R071	16.1	1	142	142	507600	7464200	410	37
TB3R072	14.2	1	123	123	507600	7464400	409	28
	22.2	2	151	190				
TB3R073	9.1	4	160	252	507601	7464800	408	31
TB3R074	6.1	12	1163	5514	507601	7465000	408	40
TB3R133	No mir	neralisation a	above 100	ppm cut-off	509098	7463901	425	16
TB3R138	3.0	2	428	652	508604	7464000	420	41
TB3R139	3.0	1	106	106	508600	7463904	421	26
TB3R140	No mir	neralisation a	above 100	ppm cut-off	508600	7464600	420	36

100 ppm 6	eU₃O ₈ cı	ut-off over 1	.m					
Hole ID	From (m)	Thickness (m)	eU₃O ₈ (ppm)	eU₃O ₈ max (over 1m)	Easting	Northing	RL	TD (m)
TB3R141	3.1	1	102	102	508498	7464000	419	51
TB3R144	5.1	2	119	136	508500	7464600	419	37
TB3R145	No mir	neralisation a	above 100	ppm cut-off	508400	7464100	417	43
TB3R148	No mir	neralisation a	above 100	ppm cut-off	508300	7464100	417	37
TB3R152	6.1	2	171	189	508200	7464500	415	16
TB3R153	6.0	2	135	160	508203	7464397	415	10
TB3R154	5.1	6	212	465	508100	7464500	414	16
TB3R156	No mir	neralisation a	above 100	ppm cut-off	508202	7464206	416	13
TB3R158	No mir	neralisation a	above 100	ppm cut-off	508000	7464100	414	46
TB3R159	6.0	5	299	443	507999	7464500	413	22
TB3R160	7.1	6	176	463	507905	7464499	412	15
TB3R162	20.1	2	212	276	507802	7464100	413	46
TB3R163	No mir	neralisation a	above 100	ppm cut-off	507801	7464500	411	13
TB3R164	5.1	12	1239	7123	507800	7465101	410	22
TB3R165	7.1	8	405	1039	507700	7465100	408	22
TB3R166	10.1	6	327	618	507698	7464501	410	22
TB3R169	11.1	4	163	236	507600	7464500	409	16
TB3R170	8.1	3	220	278	507600	7464700	409	25
	20.1	1	113	113				
TB3R171	7.1	9	364	857	507599	7465100	407	28
TB3R427	5.1	3	219	281	508098	7465200	413	16
TB3R428	6.1	2	108	110	508100	7465300	413	13
TB3R429	5.1	6	422	608	508000	7465200	412	16
	11.2	3	124	132				
TB3R430	5.1	3	186	280	508000	7465300	412	10
TB3R431	5.1	4	347	431	507900	7465200	411	13
TB3R432	5.1	7	169	228	507901	7465295	411	16
TB3R433	8.1	8	257	471	507800	7464600	411	19
TB3R434	10.2	5	160	290	507700	7464600	410	25
	17.2	4	112	177				
TB3R435	12.1	1	454	454	507600	7464600	409	16
TB3R436	6.1	9	264	536	507800	7465200	409	25
TB3R437	6.1	1	154	154	507800	7465300	409	16

100 ppm 6	100 ppm eU₃O ₈ cut-off over 1m							
Hole ID	From (m)	Thickness (m)	eU₃O ₈ (ppm)	eU₃O ₈ max (over 1m)	Easting	Northing	RL	TD (m)
	9.1	1	151	154				
TB3R438	6.1	5	174	327	507700	7465300	408	16
TB3R439	7.2	8	296	606	507705	7465200	409	22
TB3R440	7.1	9	227	440	507600	7465200	407	22
TB3R441	7.1	9	329	725	507600	7465200	407	22
TB3R442	7.1	5	193	268	507600	7465400	407	19
TB3R930	5.1	6	360	902	508096	7464597	414	16
TB3R931	5.1	5	187	297	508007	508007 7464590	413	19
TB3R932	6.1	8	456	1119	507906	7464588	412	25
	17.1	3	613	1269				

TABLE 2 - Drill Hole Status: additional 28 holes (making 144 holes in total) drilled from 3 to 15 May 2017 but without eU_3O_8 determination. Anomalous mineralised zones indicated by gamma counts per second (cps) from down hole logs

second (C	os) from dov	e Gamma Cou	nts (inside						
	Down non	rods)	iits (iiiside	Gamma	max	Hole Lo	cation (DGPS	S)	
Hole ID	From (m)	Thickness (m)	Average counts. (cps)	From (m)	cps	Easting	Northing	RL	TD (m)
TB3R443	8.4	3.7	206	8.9	285	507600	7465500	406	14
TB3R444	5.6	2.3	193	7.6	250	507700	7465400	408	11
TB3R445	7.5	0.2	156	7.6	187	507799	7465400	409	11
TB3R446	6.8	2.1	225	7.9	371	507900	7465400	410	11
TB3R447	8.1	9.5	324	17.1	1483	507502	7465200	406	21
TB3R448	8.4	3.7	483	10.6	764	507500	7465300	406	16
TB3R449	No	mineralisation	above 150c	ps cut-off		507500	7465400	406	11
TB3R172	7.4	12.5	729	17.4	3157	507500	7465100	406	31
TB3R078	No	mineralisation	above 150c	ps cut-off		507496	7464500	408	26
TB3R450	14.3	1.1	685	14.6	1591	507500	7464600	408	21
TB3R173	11.9	1.0	306	12.6	596	507499	7464700	407	21
TB3R076	13.4	0.7	171	13.4	233	507501	7464800	408	36
TB3R075	7.4	8.7	394	10.1	2755	507501	7465000	407	36
TB3R077	No	mineralisation	above 150c	ps cut-off		507502	7464401	409	26
TB3R079	No	mineralisation	above 150c	ps cut-off		507499	7464201	409	46
TB3R083	18.2	5.0	503	21.8	3681	507400	7464200	409	56
TB3R084	No	mineralisation	above 150c	ps cut-off		507400	7464400	408	46
TB3R179	22.4	1.0	343	23.1	869	507400	7464100	409	56
TB3R308	21.7	0.5	511	21.9	915	507400	7464000	409	46
TB3R180	No	mineralisation	above 150c	ps cut-off		507400	7464500	407	41
TB3R451	18.8	0.7	145	18.9	232	507400	7464600	407	36
TB3R181	13.6	0.1	133	13.6	153	507400	7464700	406	41
TB3R085	9.7	1.5	158	10.8	187	507400	7464800	407	41
15511005	15.2	0.1	139	15.2	161	307400	7404000	407	71
TB3R183	8.7	7.8	307	13.7	1352	507400	7465000	406	31
TB3R452	8.0	5.3	149	8.4	355	507400	7465200	405	21
TB3R238	8.7	4.0	182	11.0	308	507400	7465300	405	16
TB3R453	8.9	1.4	211	9.6	313	507400	7465400	405	16
TB3R454	9.3	1.2	174	10.3	285	507400	7465500	405	14

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

	Criteria	JORC Code explanation	•	Commentary
	Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	•	The current drilling relies only on U ₃ O ₈ values derived from down-hole total gamma counting (eU ₃ O ₈). First geochemical assay data are expected towards the end of the June quarter. Previous drill data used in this report includes both geochemical assay data (U ₃ O ₈) and down hole gamma equivalent uranium derived values (eU ₃ O ₈). Appropriate factors were applied to all downhole gamma counting results to make allowance for drill rod thickness, gamma probe dead times and incorporating all other applicable calibration factors. tal gamma eU₃O₈ 33 mm Auslog total gamma probes were used and operated by company personnel. Gamma probes were calibrated at Pelindaba, South Africa, in May 2007 and in December 2007. Between 2008 and 2013 sensitivity checks were conducted by periodic relogging of a test hole (Hole-ALAD1480) to confirm operation. Auslog probes were re-calibrated at the calibration pit located at Langer Heinrich Mine site in December 2014 and again in May 2015. Three probes (T010, T030 and T165) which are used at the current program were calibrated again at the Langer Heinrich calibration pit in early April 2017 shortly after the start of the current drilling program. During drilling, probes were checked daily against a standard source. Majority
				of probing was done with probe T010,T030 and T165.
_]			•	Gamma measurements were taken at 5 cm intervals at a logging speed of approximately 2 m per minute.
			•	Probing was done immediately after drilling mainly through the drill rods and in

Criteria	JORC Code explanation	•	Commentary
		•	some cases in the open holes. Rod factors have be established once sufficient in rod and open hole data were available to compensate for the reduced gamma counts when logging was done through the rods. No correction for water was done. The drill holes were dry. All gamma measurements were corrected for dead time which is unique to each probe. All corrected (dead time and rod factor) gamma values were converted to equivalent eU_3O_8 values over the same intervals using the probe-specific K-factor. The corrections and conversions to eU_3O_8 ppm values were carried out by Resource Potentials, a Perth based geophysics consulting group that has the required expertise in this area. Disequilibrium studies on 22 samples by ANSTO Minerals in 2008 confirmed that the U^{238} decay chains of the wider Tumas deposit are within an analytical error of \pm 10%, in secular equilibrium.
		Cr	nemical assay data
		•	Geochemical samples are currently being derived from Reverse Circulation (RC) drilling at intervals of 1 m. Samples are being spilt at the drill site using either a riffle or cone splitter to obtain a 1 to 4 kg sample from which 90 g will be pulverized to produce a subset for XRF-analysis. It is planned that 10 to 20% of the mineralisation from the Tumas 3 drilling will be assayed for $\rm U_3O_8$ by loose powder XRF or ICP-MS. In the 2014 drill program 240 samples were taken for confirmatory assay and submitted to Bureau Veritas laboratory in Swakopmund for $\rm U_3O_8$ ICP-MS following the procedure above. These previous assay results confirm equivalent uranium grades correctly correlated to the assay results and remain within a statistically acceptable margin of error.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, 	٠	RC drilling is being used for the Tumas 3 drilling program.

Criteria	JORC Code explanation	Commentary
	face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 All holes are being drilled vertically and intersections measured present true thicknesses.
Drill sample recov	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drill chip recoveries are good at around 90%. Drill chip recoveries were assessed by weighing 1 m drill chip samples at the drill site. Weights were recorded in sample tag books. Sample loss was minimized by placing the sample bags directly underneath cyclone/splitter
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 All drill holes are being geologically logged. The logging is qualitative in nature. The lithology type is being determined for all samples. Other parameters routinely logged include colour, colour intensity, weathering, oxidation, grain size, carbonate (CaCO₃) content, sample condition (wet, dry) and total gamma count (by Rad-eye monitor). Lithology codes were used to generate wireframes for the paleontography of the palaeochannel. This information was used in planning drill hole locations.
Sub-sampling techniques and sample preparation	 whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 A portable 2-tier (75%/25%) splitter is used to treat a full 1m sample from the cyclone into an appropriate size assay sample. All sampling was dry. The above sub-sampling techniques are common industry practice and appropriate. Sample sizes are considered appropriate to the grain size of the material being sampled. In field duplicates will be inserted into the assay batch at an approximate rate of one for every 10 samples which is compatible with industry norm.
Quality of assay o	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is 	 The analytical method employed will be XRF. The technique is industry standard and considered appropriate.

Criteria	JORC Code explanation	Commentary
and labora	 considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standard blanks, duplicates, external laboratory checks) and whethe acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	ds, er
Verification sampling a assaying	inc remedicine enginites into eccusione by cities	
Location of points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings at other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The collars are being surveyed by in-house operators using a differential GPS. All drill holes are vertical and shallow; therefore, no down-hole surveying was required. The grid system is World Geodetic System (WGS) 1984, Zone 33.
Data spaci distribution		 The data spacing and distribution is optimized along channel direction. The drill grid is close to 100m by 100m in EW and NS rectangular directions following the main target channel. The drill pattern is considered sufficient to eventually establish an inferred Mineral Resource. The total gamma count data, which is recorded at 5 cm intervals, was used to

Criteria	JORC Code explanation	•	Commentary
			calculate equivalent uranium values (eU3O8) which will be composited to 1 m composites down hole.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	•	Uranium mineralisation is strata bound and distributed in fairly continuous horizontal layers. Holes are being drilled vertically and mineralised intercepts represent the true width. All holes are sampled down-hole from surface. Geochemical samples are being collected at 1 m intervals. Total-gamma count data is being collected at 5 cm intervals.
Sample security	The measures taken to ensure sample security.	•	1m RC drill chip samples are being prepared at the drill site. The assay samples are stored in plastic bags. Sample tags are placed inside the bags. The samples are placed into plastic crates and transported from the drill site to RUN's site premises in Swakopmund by company personnel, prior to analyses and from there to the external laboratories when used. Upon completion of the assay work the remainder of the drill chip sample bags for each hole will be packed back into crates and then stored in designated containers in chronological order, locked up and kept safe at RUN's dedicated sample storage yard at Rocky Point located outside Swakopmund.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	•	D. M. Barrett (PhD MAIG) conducted an audit of gross count gamma logging procedures and log reduction methods used by Deep Yellow Limited. He concludes his audit commenting: "In summary, it is my belief that the equivalent uranium grades reported by Reptile from their gamma logging program are reliable and are probably within a few percent to the true grade".

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The work to which the Exploration Results relate was undertaken on exclusive prospecting grant EPL3496 (Tumas Zone 3). The EPL was originally granted to Reptile Uranium Namibia (Pty) Ltd (RUN) in 2006. The EPLs are in good standing and are valid until 05 June 2017. A renewal application has been submitted to the MME in March 2017 The EPL is located within the Namib Naukluft-National Park in Namibia. The EPL is subject to an agreement with a Namibian Black Empowerment partner whereby the partner has the right to acquire 5% of the project for historical costs. There are no known impediments to the project beyond Namibia's standard permitting procedures.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Prior to RUN's ownership of these EPL, extensive work was conducted by Anglo American Prospecting Services (AAPS), General Mining and Falconbridge in the 1970s. Assay results from the historical drilling are available to RUN on paper logs. They were not captured digitally and were not used for resource estimation.
Geology	Deposit type, geological setting and style of mineralisation.	 Tumas 3 mineralisation occurs as secondary carnotite enrichment of variably calcretised palaeochannel and sheet wash sediments and adjacent weathered bedrock. Uranium mineralisation at Tumas is surficial, stratabound and hosted by Cenozoic and possibly Tertiary sediments, which include from top to bottom scree sand, gypcrete, calcareous sand and calcrete. The majority of the mineralisation is hosted in calcrete. Locally, the underlying weathered Proterozoic bedrock is occasionally also mineralized.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material 	 144 holes for a total of 3611m have been drilled up to 15 May 2017 All holes were drilled vertically and intersections measured present true

Criteria	JORC Code explanation	Commentary
	 drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	thicknesses. The Tables in Appendix 1 and 2 lists the holes, their locations and relevant results.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 5 cm gamma intervals were composited into down hole intervals showing greater than 150 cps down hole gamma counts over 1m. No grade truncations were applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	The mineralisation is sub-horizontal and all drilling vertical, therefore, mineralised intercepts are considered to represent true widths.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appendix (Tables 1 and 2) show all drill holes including anomalous intervals Maps and sections are included in the text

	Criteria	JORC Code explanation	Commentary
	Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Comprehensive reporting of all Exploration Results was practiced throughout the program.
	Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 The wider area and Tumas deposit was subject to extensive drilling in the 1970's and 1980's by Anglo American Prospecting Services, Falconbridge and General Mining. An airborne EM survey conducted in 2009 better defined the broad palaeochannel system. Downhole gamma-gamma density logging for bulk density was conducted by Terratec on the Tumas 1 and 2 resources.
<i>J</i> ,	Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further drilling work is planned west and east of the currently defined Tumas 3 Zone. Further extension drilling is expected as mineralisation is open along strike to the east and west.