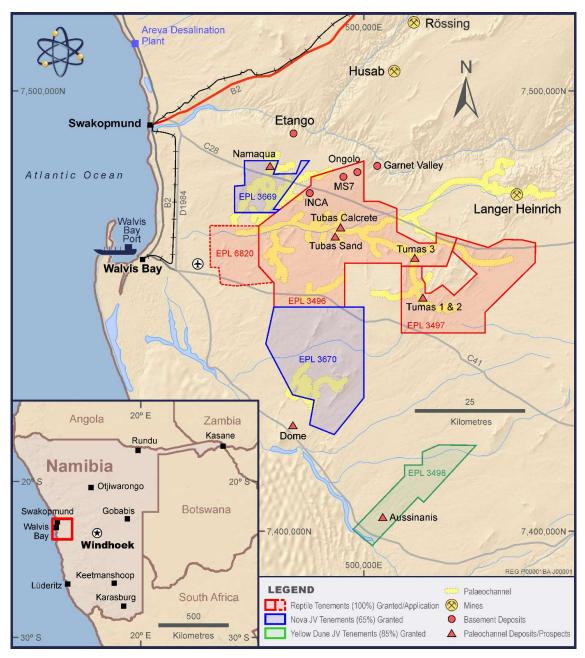


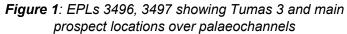
ASX Announcement

ASX: DYL OTCQB: DYLLF

5 July 2018

CONTINUING POSITIVE DRILLING FROM TUMAS 3 AREA


HIGHLIGHTS


0

- Resource drilling East and West of Tumas 3 has been completed for FY18.
 - Uranium mineralisation identified in 46% of the holes in latest drilling.
 - Mineralisation is closed off to the east and remains open to the west.
- Tumas 3 East extension drilling completed involving 3,892m in 153 holes carried out since 14 April announcement.
- Tumas 3 West extension commenced with 950m in 37 holes with mineralisation remaining open requiring further drilling.
- Strongest intersections from the latest drilling include:
 - \circ TB3R645 7m at 366ppm eU₃O₈ from 5m.
 - 1m at 1,096ppm eU₃O₈ from 14m.
 - TB3R751 7m at $612ppm eU_3O_8$ from 5m.
 - o TB3R808 13m at 708ppm eU₃O₈ from 15m.
- Mineralisation is calcrete associated and hosted in palaeochannels, similar to the Langer Heinrich uranium mine located 30km to the north east.

Deep Yellow Limited (**Deep Yellow**) is pleased to report continued encouraging drilling results from the ongoing Tumas 3 resource extension drilling program carried out on EPL3496, held by its wholly-owned subsidiary Reptile Uranium Namibia (Pty) Ltd.

Since the ASX release of 14 April 2018 resource upgrade drilling continued east and west of the Tumas 3 uranium discovery with 190 RC drill-holes for 4,842m to end June 2018. Total drilling on the Tumas palaeochannel for the 6 months ending 30 June 2018 amounted to 10,765m with 363 holes. Figure 1 shows the palaeochannel system and prospect locations.

The resource drilling around Tumas 3 targeted further extending the mineralised zone which was delineated from the November 2017 drilling. The latest drilling confirmed additional continuous uranium mineralisation over more than 3km. The Tumas 3 mineralisation, including the newly identified tributaries, now occurs over 10.5km of continuous uranium mineralisation when using a cut-off of greater than 100ppm Equivalent Uranium Oxide (eU_3O_8) over 1m. This drilling has closed off the mineralisation to the east however remains open to the west, where further drilling is planned later in 2018.

Of the total 190 holes drilled since 14 April 2011, 75 returned positive results – a success rate of 40%. The reduced success rate compared to the initial Tumas 3 drilling is caused mainly by the narrower nature of the channel. eU_3O_8 ppm values as stated herein have been determined internally. The eU_3O_8 values as shown in Appendix 1 are based on down-hole radiometric gamma logging carried out with a fully calibrated Aus-Log gamma logging system. These results will be validated by a competent geophysicist for the forthcoming resource estimation. Figure 2 shows the drill-hole locations in relation to the Tumas 3 resource. Figures 3 and 4 show cross-sections through the mineralisation east and west of Tumas 3 and highlight the continuous nature of the mineralisation across the channel.

The results of the resource drilling are regarded as very encouraging confirming the continuous eastern extension of Tumas 3 and the strong potential of continuation of the uranium mineralisation further to the west, which remains open.

<u>Analysis</u>

The resource drilling east of the Tumas 3 resource identified new mineralisation and was eventually closed off in this direction. The total Tumas 3 mineralisation now extends over 10.5km including 3 associated tributary palaeochannels. The width of the mineralisation varies between 200 and 400m in the main channel and 100 to 200m within the tributaries. Thickness of the mineralisation is variable ranging 1 to 13m. Importantly, the mineralisation remains open to the west which will be tested with the next drilling program, scheduled for the second half of 2018.

The mineralisation that has been extended at Tumas since the November 2017 drilling has no surface radiometric expression. This confirms that, apart from the benefit gained by good reinterpretation of airborne EM data to locate the prospective palaeochannel systems more accurately, discovery is only possible by drilling.

The latest drilling extended the Tumas 3 mineralisation by 3km along the main Tumas channel. Importantly, the results are clearly showing that the mineralisation has the potential to extend over more than the 10.5km strike length currently identified, particularly to the west of Tumas 3. The additional mineralisation found in tributaries to the main channel has identified further targets not previously considered. As previously shown, the uranium mineralisation is not confined to one simple, single channel but rather is associated with a complex palaeodrainage system containing several channels that head westward toward the Pacific Ocean.

Drill-hole cross sections across the Tumas 3 East and West extensions (see Figures 3 and 4) shows the continuous nature of the uranium mineralisation and also the variability and complexity of the palaeochannel topography.

Appendix 1, Table 1 lists location details of all holes drilled since 14 April 2018. Appendix 1, Table 2 lists the drill-holes which returned uranium intersections above the cut-off as eU_3O_8 in ppm with downhole depth and thickness tabulated.

Conclusion

This, the third drilling campaign conducted since the change of strategic direction of Deep Yellow has again produced successful overall results, confirming that the previously discovered Tumas 3 resource can be expanded. The work to date not only shows ability to add to the current uranium resource base of this project but, as importantly, emphasises the strong exploration potential of the uranium-fertile, extensive palaeochannel system within which the expanding Tumas 3 discovery occurs.

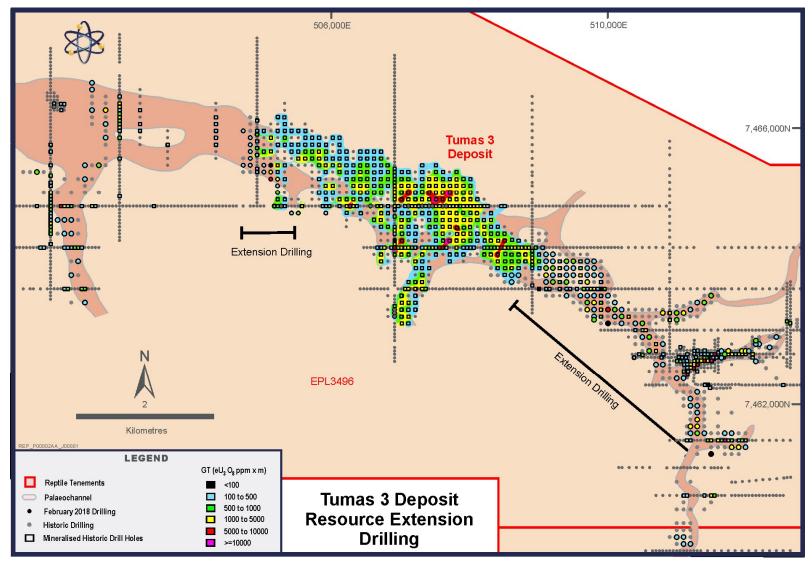
There are now 4 distinct mineralised zones (Tumas 1 & 2, Tumas 3 and Tubas Sand/calcrete deposits) identified within the 125km of palaeochannels (see Figure 1) which occur within the Reptile project tenements. Some 70%, or approximately 85km, of these palaeochannels remain to be adequately tested.

An updated resource estimation to include the recent drilling results is in progress and expected to be released by mid July 2018.

A new drilling program with continued focus on the prospective palaeochannels is planned to start in the middle of July on EPL 3497. Initially this will test targets in the east of the S-Bend and Tumas 1 areas. This will be followed by more resource drilling west of Tumas 3.

Yours faithfully

JOHN BORSHOFF Managing Director/CEO Deep Yellow Limited


For further information, contact:

John Borshoff Managing Director/CEO Phone: +61 8 9286 6999 Email: john.borshoff@deepyellow.com.au

For further information on the Company and its projects, please visit the website at: <u>www.deepyellow.com.au</u>

Competent Person's Statement

The information in this report as it relates to exploration results was compiled by Mr Martin Hirsch, a Competent Person who is a Member of the Institute of Materials, Mining and Metallurgy (IMMM) in the UK. Mr Hirsch, who is currently the Exploration Manager for Reptile Mineral Resources and Exploration (Pty) Ltd, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Hirsch consents to the inclusion in this presentation of the matters based on the information in the form and context in which it appears. Mr Hirsch holds shares in the Company.

Figure 2: Drill-hole locations showing the recent resource drilling program and the Tumas 3 resource shown as contours of eU₃O₈ grade thickness values (GT: eU₃O₈pmm x m)

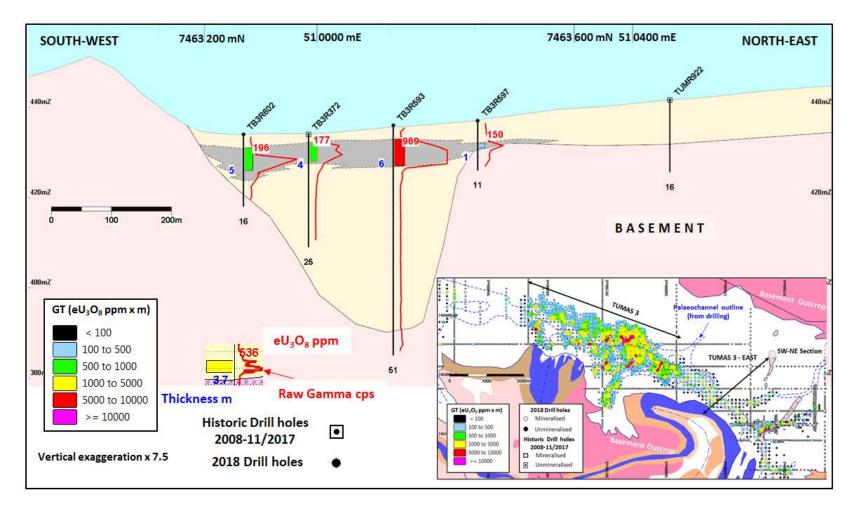


Figure 3: Tumas 3 East - Cross Section: 7463200N/509700E to 7463700N/ 510500E

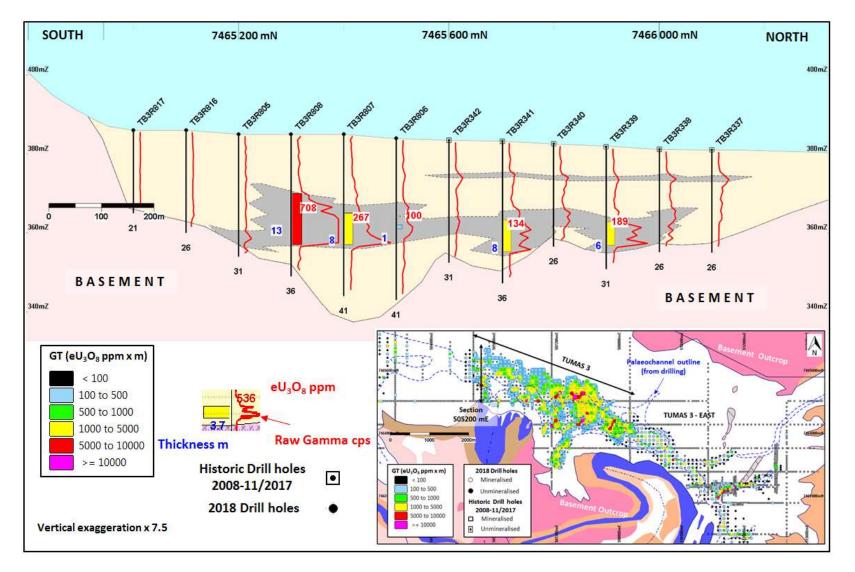


Figure 4: Tumas 3 West – Cross Section: 505200E

Tumas 3 East and West								
(188 holes drilled from 16 April to 22 June 2018)								
Hole ID	Easting	Northing	RL	TD (m)				
TB3R624	510900	7463250	445	16				
TB3R625	510900	7463000	445	16				
TB3R626	510900	7462900	445	26				
TB3R627	510900	7462800	445	26				
TB3R628	510900	7462600	445	26				
TB3R629	511100	7463450	449	11				
TB3R630	511100	7463350	448	31				
TB3R631	511100	7463250	448	16				
TB3R632	511200	7463450	450	11				
TB3R633	511200	7463350	449	31				
TB3R634	511200	7463250	449	11				
TB3R635	511100	7462800	447	16				
TB3R636	511100	7462600	447	11				
TB3R637	511100	7462400	448	51				
TB3R638	511200	7462400	449	31				
TB3R639	511750	7462800	456	16				
TB3R640	511600	7462800	454	11				
TB3R641	511750	7462700	457	36				
TB3R642	511750	7462650	457	26				
TB3R643	511800	7462800	457	26				
TB3R644	511800	7462750	457	36				
TB3R645	511850	7462800	457	21				
TB3R646	511950	7462800	459	21				
TB3R647	512000	7462800	459	36				
TB3R648	512050	7462800	460	31				
TB3R649	512100	7462800	460	26				
TB3R650	512150	7462800	460	21				
TB3R651	512300	7462850	463	26				
TB3R652	512300	7462900	463	21				
TB3R653	512300	7462950	463	31				
TB3R654	512450	7462850	465	36				
TB3R655	512500	7462850	466	16				

Table 1 – Drill-hole Locations – 173 RC Holes drilled 15 April to 30 June 2018

Hole ID	Easting	Northing	RL	TD (m)
TB3R656	512550	7462850	467	11
TB3R657	512850	7463150	471	16
TB3R658	512850	7463200	471	11
TB3R659	512850	7463250	471	6
TB3R660	508400	7464000	419	36
TB3R661	508400	7463900	420	6
TB3R662	512250	7462650	463	21
TB3R663	512300	7462650	464	11
TB3R664	512350	7462650	465	11
TB3R665	512400	7462550	466	6
TB3R666	512550	7462400	468	6
TB3R667	508500	7463900	420	16
TB3R668	508600	7463800	421	11
TB3R669	508700	7463900	422	56
TB3R670	508700	7463800	422	36
TB3R671	508800	7463900	423	41
TB3R672	508800	7463800	423	51
TB3R673	508900	7463850	423	26
TB3R674	508900	7463750	424	46
TB3R675	509100	7464400	426	16
TB3R676	509200	7464400	427	21
TB3R678	509200	7464500	427	26
TB3R677	509100	7464500	426	16
TB3R679	511300	7463400	450	21
TB3R680	511300	7463300	450	21
TB3R681	511300	7463500	451	6
TB3R682	511400	7463400	452	16
TB3R683	511500	7463500	453	11
TB3R684	511500	7463600	453	11
TB3R685	511500	7463400	453	6
TB3R686	511900	7461900	462	11
TB3R687	511700	7461900	459	11
TB3R688	511500	7461900	465	16

Hole ID	Easting	Northing	RL	TD (m)
TB3R689	511500	7462100	455	11
TB3R690	511300	7462100	452	46
TB3R691	511400	7462100	454	31
TB3R692	511200	7462100	451	11
TB3R693	511700	7462100	458	11
TB3R694	511300	7461900	453	11
TB3R695	511700	7461700	459	6
TB3R696	511500	7461700	457	11
TB3R697	511300	7461700	455	46
TB3R698	511400	7461700	455	36
TB3R699	511600	7461300	460	21
TB3R700	511400	7461300	458	16
TB3R701	511800	7461300	462	11
TB3R702	511300	7460900	461	11
TB3R703	511100	7460900	461	46
TB3R704	511300	7460500	465	16
TB3R705	511500	7460500	467	11
TB3R716	511300	7460300	468	46
TB3R717	511100	7460300	464	11
TB3R718	511100	7460100	466	11
TB3R719	511000	7460100	466	11
TB3R720	511200	7460100	467	16
TB3R721	511300	7460100	468	41
TB3R722	511100	7460000	467	11
TB3R723	511200	7460000	469	31
TB3R724	511300	7460000	470	46
TB3R725	511300	7460200	468	46
TB3R726	511200	7460200	466	11
TB3R727	511100	7460200	466	16
TB3R728	511200	7460300	467	21
TB3R729	511200	7460500	464	21
TB3R730	511100	7460500	464	11
TB3R731	511200	7460600	463	11

			,	
Hole ID	Easting	Northing	RL	TD (m)
TB3R732	511600	7460600	466	11
TB3R733	512000	7461400	464	26
TB3R734	511800	7461400	462	21
TB3R735	512100	7461400	466	21
TB3R736	512000	7461300	465	11
TB3R737	511900	7461400	463	41
TB3R738	511700	7461400	460	11
TB3R739	511900	7461300	463	16
TB3R740	511600	7461400	459	26
TB3R741	511400	7461400	458	21
TB3R742	511300	7461600	455	41
TB3R743	511400	7461600	456	46
TB3R744	511500	7461600	457	26
TB3R745	511600	7461600	458	11
TB3R746	511700	7461600	459	11
TB3R747	511800	7461600	461	11
TB3R748	512000	7461600	464	11
TB3R749	511900	7461600	462	16
TB3R750	511500	7461800	456	12
TB3R751	511400	7461800	455	36
TB3R752	511300	7461800	453	46
TB3R753	512100	7461600	465	26
TB3R754	511400	7461900	454	46
TB3R755	511400	7462000	454	46
TB3R756	511300	7462000	452	16
TB3R757	511500	7462000	456	21
TB3R758	511200	7462000	451	6
TB3R759	511100	7462200	450	26
TB3R760	511300	7462200	452	46
TB3R761	511400	7462200	453	26
TB3R762	511250	7461700	453	21
TB3R763	511250	7461600	455	31
TB3R764	511500	7462200	455	21

Hole ID	Easting	Northing	RL	TD (m)
TB3R765	511200	7462200	451	31
TB3R766	511000	7462400	447	51
TB3R767	510900	7462400	447	51
TB3R768	510900	7462500	447	46
TB3R769	510800	7462600	443	41
TB3R770	512100	7462850	460	31
TB3R771	512200	7462850	462	6
TB3R772	512400	7462850	465	36
TB3R773	512250	7462900	462	31
TB3R774	512250	7462950	462	21
TB3R775	512200	7462950	462	31
TB3R776	512300	7463000	463	11
TB3R777	512450	7463000	465	21
TB3R778	512550	7463000	466.5	21
TB3R779	512600	7463000	467	21
TB3R780	512500	7463000	466	26
TB3R781	511100	7463200	448	11
TB3R782	510900	7463400	446	11
TB3R783	511400	7463300	452	21
TB3R784	511400	7463500	452	21
TB3R785	511600	7463500	454	11
TB3R786	511600	7463600	454	26
TB3R787	511700	7463600	456	11
TB3R788	504900	7466200	378	26
TB3R789	504900	7466100	378	31
TB3R790	504900	7466000	379	41
TB3R791	504900	7465900	380	31
TB3R792	504900	7465800	380	31
TB3R793	504900	7465700	380	41
TB3R794	504900	7465600	381	41
TB3R795	504900	7465500	382	41
TB3R796	504900	7465400	382	36
TB3R797	504800	7465400	381	41

	1			
Hole ID	Easting	Northing	RL	TD (m)
TB3R798	504800	7465500	381	41
TB3R799	504800	7465600	380	41
TB3R800	504800	7465700	380	41
TB3R801	504800	7465800	379	41
TB3R802	504800	7465900	378	41
TB3R803	504800	7466000	378	36
TB3R804	504800	7466100	378	31
TB3R805	505200	7465200	385	31
TB3R806	505200	7465500	384	41
TB3R807	505200	7465400	385	41
TB3R808	505200	7465300	385	36
TB3R809	505300	7465300	386	41
TB3R810	505300	7465200	386	41
TB3R811	505300	7465100	385	41
TB3R812	505100	7465200	384	36
TB3R813	505100	7465300	384	36
TB3R814	505100	7465400	384	29
TB3R815	505100	7465500	383	41
TB3R816	505200	7465100	386	26
TB3R817	505200	7465000	386	21
TB3R818	505400	7464800	391	41
TB3R819	505500	7464800	393	41
TB3R820	505600	7464800	393	41
TB3R821	506000	7464800	394	41
TB3R822	506100	7464800	395	40
TB3R823	506200	7464800	395	40

	Table 1 - Drill-hole Status with eU ₃ O ₈ determination								
Hole ID	From (m)	Thickness (m)	eU₃O ₈ (ppm)	From (m)	eU₃O ₈ max (over 1 m)	Easting	Northing	RL	TD (m)
TB3R626	7.0	2.0	122	8.0	144	510900	7462900	445	26
TB3R628	4.0	3.0	159	5.0	195	510900	7462600	445	26
TB3R630	8.0	4.0	141	8.0	162	511100	7463350	448	31
TB3R631	8.0	3.0	203	9.0	265	511100	7463250	448	16
TB3R633	8.0	6.0	307	10.0	460	511200	7463350	449	31
TB3R637	0.0	1.0	272	0.0	272	511100	7462400	448	51
TB3R638	14.0	1.0	400	14.0	400	511200	7462400	449	31
TB3R639	7.0	2.0	247	8.0	322	511750	7462800	456	16
TB3R641	2.0	1.0	122	2.0	122	511750	7462700	457	36
TB3R644	6.0	5.0	166	9.0	299	511800	7462750	457	36
TB3R645	5.0	7.0	366	8.0	1048	511850	7462800	457	21
TB3R645	14.0	1.0	1096	14.0	1096				
TB3R648	10.0	6.0	282	11.0	699	512050	7462800	460	31
TB3R649	10.0	9.0	275	12.0	746	512100	7462800	460	26
TB3R650	11.0	2.0	133	11.0	137	512150	7462800	460	21
TB3R652	7.0	3.0	145	7.0	157	512300	7462900	463	21
TB3R654	9.0	1.0	114	9.0	114	512450	7462850	465	36
TB3R662	9.0	1.0	106	9.0	106	512250	7462650	463	21
TB3R669	4.0	1.0	140	4.0	140	508700	7463900	422	56
TB3R670	2.0	1.0	127	2.0	127	508700	7463800	422	36
TB3R671	5.0	1.0	267	5.0	267	508800	7463900	423	41
TB3R679	4.0	2.0	135	5.0	167	511300	7463400	450	21
TB3R683	2.0	4.0	164	3.0	192	511500	7463500	453	11
TB3R690	3.0	3.0	129	4.0	138	511300	7462100	452	46
TB3R697	6.0	7.0	152	10.0	277	511300	7461700	455	46
TB3R698	3.0	10.0	220	6.0	561	511400	7461700	455	36
TB3R699	9.0	1.0	100	9.0	100	511600	7461300	460	21
TB3R718	7.0	2.0	183	7.0	233	511100	7460100	466	11
TB3R720	7.0	2.0	167	7.0	201	511200	7460100	467	16
TB3R723	16.0	1.0	137	16.0	137	511200	7460000	469	31
TB3R724	20.0	1.0	104	20.0	104	511300	7460000	470	46

TABLE 2 - Resource Drill-hole Status - Intersections > 100ppm eU $_3O_8$ over 1m (75 holes drilled from 15 April to 30 June 2018)

TABLE 2 - Resource Drill-hole Status - Intersections (continued)

Hole ID	From (m)	Thickness (m)	eU₃Oଃ (ppm)	From (m)	eU₃O ₈ max (over 1 m)	Easting	Northing	RL	TD (m)
TB3R733	7.0	11.0	137	17.0	269	512000	7461400	464	26
TB3R735	6.0	2.0	107	6.0	110	512100	7461400	466	21
TB3R737	8.0	10.0	191	16.0	668	511900	7461400	463	41
TB3R742	1.0	5.0	160	4.0	223	511300	7461600	455	41
TB3R742	10.0	2.0	191	10.0	235				
TB3R743	2.0	7.0	126	7.0	155	511400	7461600	456	46
TB3R744	3.0	3.0	140	4.0	150	511500	7461600	457	26
TB3R747	7.0	2.0	138	8.0	163	511800	7461600	461	11
TB3R749	6.0	3.0	134	7.0	140	511900	7461600	462	16
TB3R751	5.0	7.0	612	7.0	1549	511400	7461800	455	36
TB3R754	2.0	1.0	100	2.0	100	511400	7461900	454	46
TB3R754	6.0	4.0	110	6.0	133				
TB3R755	4.0	2.0	127	5.0	143	511400	7462000	454	46
TB3R755	10.0	2.0	186	10.0	205				
TB3R756	3.0	4.0	113	5.0	184	511300	7462000	452	16
TB3R761	7.0	1.0	111	7.0	111	511400	7462200	453	26
TB3R761	10.0	1.0	157	10.0	157				
TB3R769	8.0	1.0	103	8.0	103	510800	7462600	443	41
TB3R773	9.0	1.0	101	9.0	101	512250	7462900	462	31
TB3R774	3.0	2.0	257	4.0	398	512250	7462950	462	21
TB3R778	5.0	1.0	118	5.0	118	512550	7463000	466.5	21
TB3R778	8.0	3.0	109	10.0	125				
TB3R784	3.0	1.0	120	3.0	120	511400	7463500	452	21
TB3R786	3.0	5.0	172	7.0	275	511600	7463600	454	26
TB3R791	22.0	2.0	133	23.0	136	504900	7465900	380	31
TB3R792	9.0	1.0	101	9.0	101	504900	7465800	380	31
TB3R792	25.0	1.0	179	25.0	172				
TB3R793	14.0	1.0	104	14.0	104	504900	7465700	380	41
TB3R794	25.0	3.0	113	26.0	120	504900	7465600	381	41
TB3R795	26.0	2.0	122	27.0	134	504900	7465500	382	41
TB3R798	23.0	1.0	130	23.0	130	504800	7465500	381	41
TB3R803	21.0	2.0	156	22.0	179	504800	7466000	378	36
TB3R806	22.0	1.0	100	22.0	100	505200	7465500	384	41

Hole ID	From (m)	Thickness (m)	eU₃O ₈ (ppm)	From (m)	eU₃O ₈ max (over 1 m)	Easting	Northing	RL	TD (m)
TB3R807	20.0	8.0	267	27.0	929	505200	7465400	385	41
TB3R808	15.0	13.0	708	26.0	1687	505200	7465300	385	36
TB3R809	21.0	7.0	620	25.0	1545	505300	7465300	386	41
TB3R810	20.0	3.0	109	22.0	135	505300	7465200	386	41
TB3R811	18.0	7.0	105	19.0	126	505300	7465100	385	41
TB3R811	29.0	2.0	338	24.0	140				
TB3R814	21.0	2.0	150	22.0	192	505100	7465400	384	29
TB3R815	23.0	1.0	125	23.0	125	505100	7465500	383	41
TB3R819	33.0	1.0	227	33.0	227	505500	7464800	393	41
TB3R820	29.0	3.0	245	30.0	380	505600	7464800	393	41
TB3R821	18.0	1.0	150	18.0	150	506000	7464800	394	41
TB3R823	19.0	2.0	187	20.0	206	506200	7464800	395	40

TABLE 2 - Resource Drill-hole Status - Intersections (continued)

Table 1 Report (JORC Code 2012 addition)

JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 The current drilling relies on down hole gamma data from calibrated probes which were converted into equivalent uranium values (eU₃O₈) by experienced DYL personnel and will be confirmed by a competent person (geophysicist) at a later date. First geochemical assay data have been received. Previous drill data used in this report includes both geochemical assay data (U₃O₈) and down hole gamma equivalent uranium derived values (eU₃O₈). Appropriate factors were applied to all downhole gamma counting results to make allowance for drill rod thickness, gamma probe dead times and incorporating all other applicable calibration factors. Total gamma eU₃O₈ 33mm Auslog total gamma probes were used and operated by Company personnel. Gamma probes were calibrated at Pelindaba, South Africa, in May 2007 and in December 2007. Between 2008 and 2013 sensitivity checks were conducted by periodic relogging of a test hole (Hole-ALAD1480) to confirm operation. Auslog probes were re-calibrated at the calibration pit located at Langer Heinrich Mine site in December 2014 and again in May 2015. Four probes (T010, T030, T162 and T165) one which (T162) are used at the current program were calibrated again at the Langer Heinrich calibration pit in early April 2017 .The probes will be calibrated again in July 2018.

Criteria	JORC Code explanation	Commentary
		 All probing was done with probe T162. Gamma measurements were taken at 5cm intervals at a logging speed of approximately 2 m per minute. Probing was done immediately after drilling mainly through the drill rods and i some cases in the open holes. Rod factors have been established once sufficient in rod and open hole data were available to compensate for the reduced gamma counts when logging was done through the drill rods. N correction for water was done. The drill-holes were dry. All gamma measurements were corrected for dead time which is unique to eac probe. All corrected (dead time and rod factor) gamma values were converted the equivalent eU₃O₈ values over the same intervals using the probe-specific k factor. Disequilibrium studies on 22 samples by ANSTO Minerals in 2008 confirme that the U²³⁸ decay chains of the wider Tumas deposit are within an analytica error of ± 10%, in secular equilibrium.
		 Chemical assay data Geochemical samples were derived from Reverse Circulation (RC) drilling a
		 intervals of 1m. Samples were spilt at the drill site using either a riffle or con splitter to obtain a 1 to 4kg sample from which 90g will be pulverised to product a subset for XRF-analysis. 10 to 20% of the mineralisation from the Tumas 3 drilling has been assayed for U₃O₈ by loose powder XRF or ICP-MS. The results will be used to confirm th gamma tool derived equivalent uranium values. In the 2017 resource drilling program 932 samples were taken for confirmator assay and submitted to ALS in South Africa for U₃O₈ XRF analysis following th procedure above. These previous assay results confirm equivalent uranium grades correctl correlated to the assay results and remain within a statistically acceptabl margin of error.

Criteria	JORC Code explanation	• Commentary
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC drilling is being used for the Tumas 3 drilling program. All holes are being drilled vertically and intersections measured present true thicknesses.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drill chip recoveries are good at around 90%. Drill chip recoveries were assessed by weighing 1m drill chip samples at the drill site. Weights were recorded in sample tag books. Sample loss was minimized by placing the sample bags directly underneath cyclone/splitter
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill-holes are being geologically logged. The logging is qualitative in nature. The lithology type is being determined for all samples. Other parameters routinely logged include colour, colour intensity, weathering, oxidation, grain size, carbonate (CaCO₃) content, sample condition (wet, dry) and total gamma count (by hand held Rad-Eye scintillometer). Lithology codes were used to generate wireframes for the paleo topography of the palaeochannel. This information was used in planning drill-hole locations.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 A portable 2-tier (75%/25%) splitter was used to treat a full 1m sample from the cyclone into an appropriate size assay sample. All sampling was dry. The above sub-sampling techniques are common industry practice and appropriate. Sample sizes are considered appropriate to the grain size of the material being sampled. Duplicates have been inserted into the assay batch at an approximate rate of one for every 10 samples which is compatible with industry norm.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The analytical method employed is XRF. The technique is industry standard and considered appropriate. The analytical method employed for an earlier drill program in 2014 was ICP-MS which is also considered industry standard and appropriate as well. Downhole gamma tools were used as explained under 'Sampling techniques'. This is the principal evaluating technique.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Geology was directly recorded into a tablet in the field and sample tag books filed in at the drill site. The drill data of those logs and tag books (lithology, sample specifications etc.) were transferred by designated personnel into a geological database. Twinning RC holes was not considered due to the high variability in grade distribution. Equivalent eU₃O₈ values have previously been, and were for the current program, calculated from raw gamma files by applying calibration factors and casing factors where applicable. The adjustment factors were stored in the database. Equivalent U₃O₈ data were composited to 1m intervals. The ratio of eU₃O₈ vs assayed U₃O₈ for matching composites will be used to quantify the statistical error.
Location of data points	 Accuracy and quality of surveys used to locate drill-holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The collars are being surveyed by in-house operators using a differential GPS. All drill-holes are vertical and shallow; therefore, no down-hole surveying was required. The grid system is World Geodetic System (WGS) 1984, Zone 33.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve 	 The data spacing and distribution is optimised along channel direction. The initial drilling was exploratory in nature and drill-hole spacing varied at 100 to 200m along 400 to 800m spaced lines. A closer drill spacing of 100 by 100m was employed for resource drilling work.

Criteria	JORC Code explanation	Commentary
	estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The resource drill grid at Tumas 3 is close to 100m by 100m in EW and NS rectangular directions following the main target channel. The 100m by 100m drill-hole spacing is considered sufficient to define an inferred resource in the future. The total gamma count data, which is recorded at 5 cm intervals, was used to calculate equivalent uranium values (eU₃O₈) which were composited to 1m composites down hole.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Uranium mineralisation is strata bound and distributed in fairly continuous horizontal layers. Holes are being drilled vertically and mineralised intercepts represent the true width. All holes were sampled down-hole from surface. Geochemical samples are being collected at 1m intervals. Total-gamma count data is being collected at 5cm intervals.
Sample security	• The measures taken to ensure sample security.	 1m RC drill chip samples were prepared at the drill site. The assay samples were stored in plastic bags. Sample tags were placed inside the bags. The samples were placed into plastic crates and transported from the drill site to RMR's site premises in Swakopmund by Company personnel, prior to analyses and from there to the external laboratories when used. Upon completion of the assay work the remainder of the drill chip sample bags for each hole will be packed back into crates and then stored in designated containers in chronological order, locked up and kept safe at RMR's dedicated sample storage yard at Rocky Point located outside Swakopmund. This work has started.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 D. M. Barrett (PhD MAIG) conducted an audit of gross count gamma logging procedures and log reduction methods used by Deep Yellow Limited. He concludes his audit commenting: "In summary, it is my belief that the equivalent uranium grades reported by Reptile from their gamma logging program are reliable and are probably within a few percent to the true grade".

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The work to which the Exploration Results relate was undertaken on Exclusive Prospecting Licence EPL3496. The EPL was originally granted to Reptile Uranium Namibia (Pty) Ltd (RUN) in 2006. The EPL is in good standing and valid until 5 June 2019. The EPL is located within the Namib Naukluft-National Park in Namibia. The EPL is subject to an agreement with a Namibian Black Empowerment partner whereby the partner has the right to acquire 5% of the project for historical costs. There are no known impediments to the project beyond Namibia's standard permitting procedures.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Prior to RUN's ownership of this EPL, extensive work was conducted by Anglo American Prospecting Services (AAPS), General Mining and Falconbridge in the 1970s. Assay results from the historical drilling are available to RUN on paper logs. They were not captured digitally and were and will not used for resource estimation.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Tumas 3 mineralisation occurs as secondary carnotite enrichment of variably calcretised palaeochannel and sheet wash sediments and adjacent weathered bedrock. Uranium mineralisation at Tumas is surficial, stratabound and hosted by Cenozoic and possibly Tertiary sediments, which include from top to bottom scree sand, gypcrete, calcareous sand, gravel and calcrete. The majority of the mineralisation is hosted in calcrete. Locally, the underlying weathered Proterozoic bedrock is occasionally also mineralised.
Drill-hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material 	 190 holes for a total of 4,842m have been drilled in the current program up to the 30th of June 2018. All holes were drilled vertically and intersections measured present true

Criteria	JORC Code explanation	Commentary
	 drill-holes: easting and northing of the drill-hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill-hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 thicknesses. The Table 2 in Appendix 1 lists all the drill-hole locations. Table 1 list the results of intersections greater than 100ppm eU₃O₈ over 1m.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 5 cm intervals of down hole gamma counts per second (cps) logged inside the drill rods were composited into 1m down hole intervals showing greater than 100cps values over 1m. No grade truncations were applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill-hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The mineralisation is sub-horizontal and all drilling vertical, therefore, mineralised intercepts are considered to represent true widths.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill-hole collar locations and appropriate sectional views. 	 Appendix 1 (Tables 2) show all drill-hole locations. Table 1 list the anomalous intervals. Maps and sections are included in the text.

Criteria	JORC Code explanation	Commentary
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Comprehensive reporting of all Exploration Results was practised on the completion of the drilling program.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 The wider area and Tumas deposit was subject to extensive drilling in the 1970's and 1980's by Anglo American Prospecting Services, Falconbridge and General Mining. An airborne EM survey conducted in 2009 better defined the broad palaeochannel system. Downhole gamma-gamma density logging for bulk density was conducted by Terratec on the Tumas 1 and 2 resources.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further drilling work is planned mainly west of the currently defined Tumas 3 Zone and its extensions. Further extension drilling is expected as mineralisation is open along strike to the west. Figure 2 indicates the open nature of the Tumas 3 mineralisation to the west. Extension drilling is planned to start later in H2 of 2018.