

Deep Yellow

Limited

Paydirt's 2012 Uranium Conference

The TRS Project:
"Making a Silk Purse out
of a Sow's Ear"

28th February 2012

Greg Cochran – Managing Director

ASX: DYL www.deepyellow.com.au

Disclaimer

Forward Looking Statements

This presentation has been prepared by Deep Yellow Limited ("Deep Yellow"). The information contained in this presentation is of a general nature only and does not constitute and offer to issue, or to arrange an issue, of securities or financial products. The information contained in this presentation is not investment or financial product advice and is not intended to be used as the basis for making an investment decision. This presentation has been prepared without taking into account the investment objectives, financial situation or particular needs of any particular person.

Before making an investment decision on the basis of this presentation, the investor needs to consider, with or without the assistance of a financial advisor, whether the investment is appropriate with due regard for their particular investment needs, objectives and financial circumstances.

This presentation is based on company stock exchange announcements, stockbroker research and technical information believed to be reliable. To the maximum extent permitted by law, none of Deep Yellow's Directors, employees or agents, nor any other person accepts any liability, including, without limitation, any liability arising out of fault of negligence, for any loss arising from the use of the information contained in this presentation nor is any obligation assumed to update such information. In particular, no representation or warranty, express or implied, is provided as to its accuracy, completeness or currency of the information contained in this presentation. Deep Yellow accepts no obligation to correct or update the information or opinions expressed in it. Opinions expressed are subject to change without notice and reflect the views of Deep Yellow at the time of presenting.

Overview & Vision

- Corporate Profile
- Namibian Core Projects
- 2011 Highlights
- The TRS Project
- Summary and Conclusion

Commence uranium production in Namibia in 2015 and continue to successfully grow our uranium resource base

Corporate Profile

The Board

Mervyn Greene – Chairman

Greg Cochran – Managing Director

Martin Kavanagh – Executive Director

Gillian Swaby – N.E.D

Rudolf Brunovs – N.E.D (independent)

Mark Pitts – Company Secretary

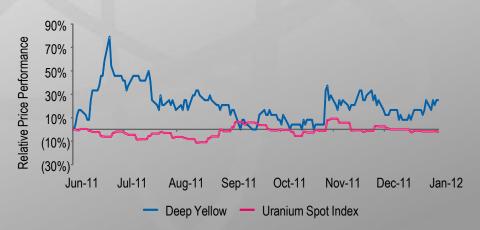
Executives & Management

Greg Cochran – Managing Director

Martin Kavanagh – Executive Director

Leon Pretorius – MD: Namibia

Ursula Pretorius – Financial Controller

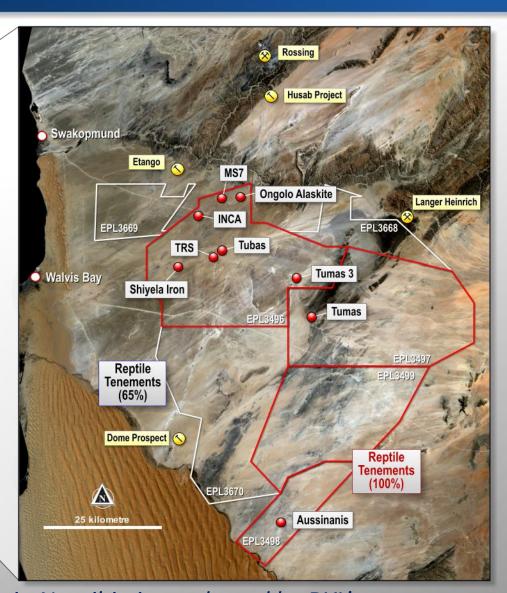

Klaus Frielingsdorf – GM: Technical

Capital Structure – as at 27 Feb 2012

Shares on Issue	1,128.51 M
Unlisted Options/Perf. Rights	12.68 M
Market Cap (@ 13c)	~ 147 M
Net Cash	~6 M
Major shareholders:	
Paladin Energy	19.9%
Board & Management	15.7%

DYL Share Price vs. Uranium Spot

Relative Price Performance – DYL v. Uranium Price (20 Jun '11 - 20 Jan '12)



Namibian Tenements – Reptile Uranium*

4,195 km² exploration area: 101.4 Mlbs in resources

*Note: Exploration in Namibia is conducted by DYL's wholly-owned subsidiary Reptile Uranium Namibia (RUN)

Three Namibian Core Projects

OMAHOLA PROJECT

ONGOLO & MS7 ALASKITE	INCA URANIFEROUS MAGNETITE
JORC resource: 23.6 Mlbs	JORC resource: 13.4 Mlbs
Primary mineralisation	Primary mineralisation
Open Pit Hardrock – Drill & blast	Open Pit Hardrock – Drill & blast
Acid plant treatment	Acid plant treatment
Grade/Cut-off: 416 ppm/250 ppm	Grade/Cut-off: 490 ppm/250 ppm

Three deposits feeding a central plant

TRS PROJECT

TUBAS RED SAND DEPOSIT
JORC resource: 28.4 Mlbs
Secondary mineralisation
Shallow wind blown sand deposit
Free dig/physical beneficiation
Acid or alkali plant treatment
Grade/Cut-off: 148 ppm/70 ppm

SHIYELA IRON PROJECT

SHIYELA IRON DEPOSIT
Mineralisation: Magnetite/Hematite
Open Pit Hardrock – Drill & blast
Drilling completed mid-2011
Scoping Study Completed 2012
Capex: U\$467 M Opex: U\$78/t
78.7 Mt @ 18.9% Fe, 16.2% DTR

2011 Summary

- Ongolo & MS7 JORC Resource delivered
- Successful TRS Beneficiation Trial
- 🕸 INCA & TRS EIA's completed & submitted 🗸
- Shiyela EIA completed & submitted
- TRS Deposit upgrade underway for standalone project
- Mining Licence applications for TRS/INCA submitted
- Shiyela Mining Licence application submitted
- Shiyela resource and scoping study completed

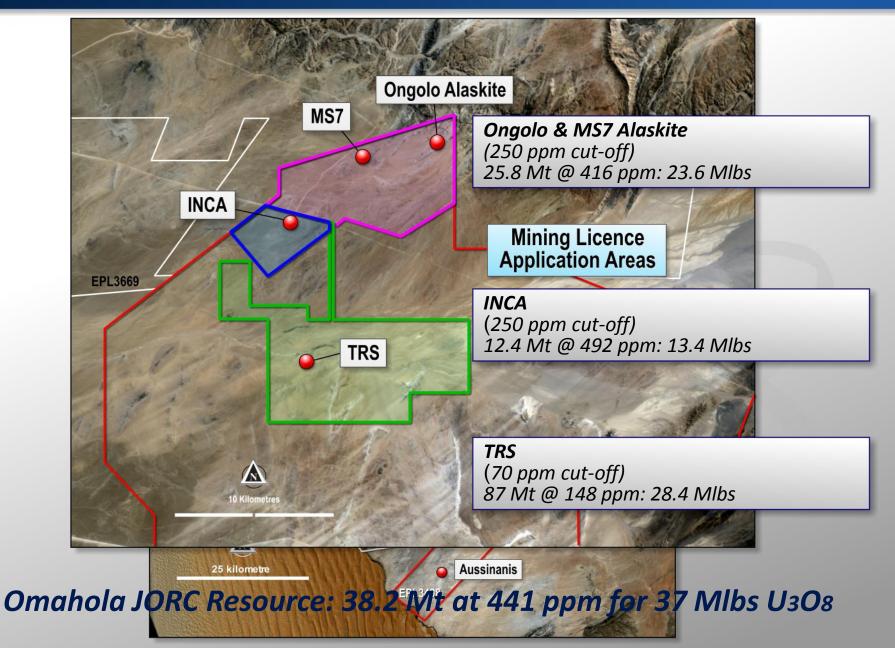
An Outstanding Year of Achievement

2012 Objectives

- Omahola Project:
 - Continue to expand Ongolo & MS7 Resource base
 - Achieve Resource Critical Mass for Project (>50 Mlbs)
 - Finalise Pre-Feasibility Study
- **TRS Project**
 - Resource Upgrade
 - Standalone Option Pre-Feasibility Study
- Shiyela
 - Large diameter drilling for pilot plant testwork
 - Raise funding for and complete Feasibility Study
 A multi-project company rapidly advancing

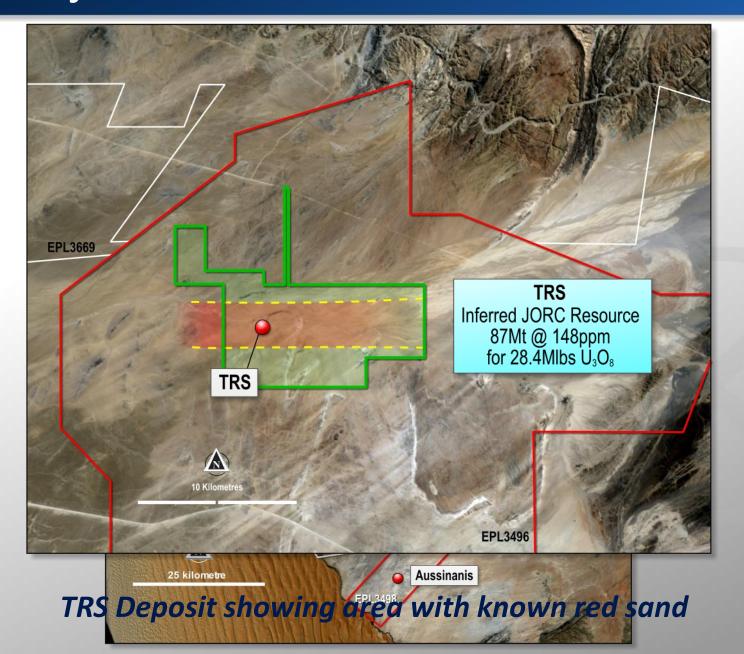
its flagship projects towards development

Uranium Project Criteria


Grade:

- ~300ppm U₃O₈ for palaeochannel and sheetwash calcretes
- ~400ppm U₃O₈ for hard rock open pit deposits (alaskites)
- ~1,000ppm U₃O₈ for potential underground deposits
- Minimum 18Mlbs U₃O₂ per deposit with upside (15 yr mine life)
- ♦ Minimum production profile ~2.2Mlbs per operation
- No refractory uranium minerals
- Resource inventory ~100Mlbs U₃O₈ to enable long term offtake agreements
- Use physical beneficiation for unique low grade sand deposit

Rational economics drives exploration and project decision making


Omahola & TRS Project Locations

TRS Project – MLA & Red Sand Area

TRS Project – Basics

Deposit Characteristics:

- Well-sorted wind-blown sand, low grade uranium
- Free flowing/loosely consolidated
- Large area along the Tubas palaeochannel
- Bulk of uranium in sub 20μm fraction
- Uranium mineral almost exclusively carnotite
- * At~150ppm, generally considered uneconomic

Objective:

Concentrate maximum uranium in minimum volume through physical beneficiation to enhance economics

Why Physical Beneficiation?

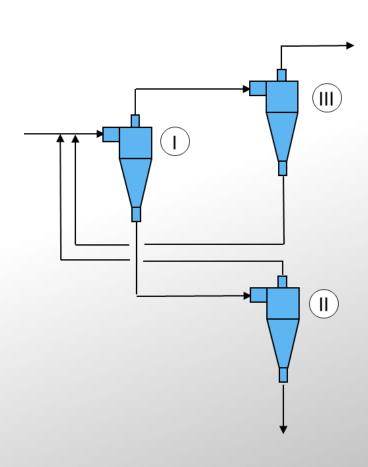
- Decreases the physical weight of material to be handled
- Reduces amount of gangue and increases uranium concentration
- Some alternatives:
 - Radiometric sorting
 - Grinding and sizing
 - Gravity separation
 - Magnetic or Electrostatic separation
 - Floatation cells

BUT!

- Few ores are amenable to simple physical beneficiation
- If they are, it offers large cost and process advantages

The Schauenburg Solution

Process:


Hydrosort®- II → Scrubbing → Hydrosort®- I → 3 X Hydrocyclones

Successful Pilot Plant Test:

- Simple, physical beneficiation process
- Uranium Recovery >80% in <20% volume</p>
- Carbonate reduction >80%
- Mass pull between 10% ~ 20%
- Uranium upgrade factor 7.9 (at 10% mass pull)
- Process guarantee offered

The Schauenburg Solution

Hydrocyclone Schematic

Pilot Plant

Bulk Sample for Testwork

Spoil Pile

Trench for Bulk Sample

Scrubbing

Mineral Liberation

Flotation Tests

Mineral Size Separation

Column Leach

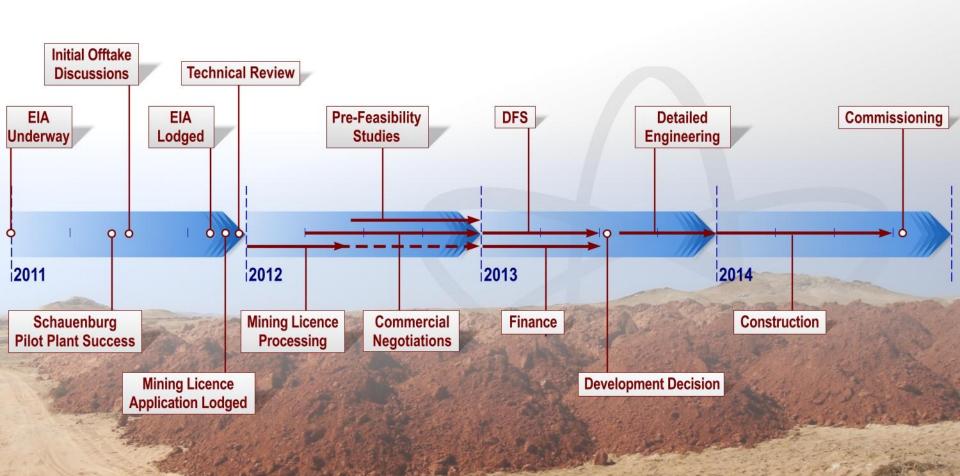
Open Flask Leach

Loaded IX Resin @ pH 2.5

Summary & Implications

- Successful Pilot Plant Testwork was conducted on a TRS deposit bulk sample
- The deposit can be upgraded via physical beneficiation
- A uranium recovery in excess of 80% was achieved
- A uranium upgrade factor 7.9 was obtained
- * Testwork also showed that the Schauenburg product is easily leached and loaded onto resin
- Combined with the TRS deposit upgrade to 87 Mt @ 148 ppm for a 28.4 Mlb resource, the project has critical mass
- The Project has environmental clearance with a Mining Licence Application under assessment

The new resource, combined with the successful testwork, enables the TRS Deposit to be a standalone project


TRS Standalone Project Strategy

- Develop sand mining operation with Schauenburg Plant on the TRS Deposit
- **Solution** Construct Resin-In-Leach Circuit on the INCA MLA
- Produce loaded resin for sale to existing Namibian uranium producers
- Small columns transportable by truck low volume, high value product
- Schauenburg plants are modular, allowing scalability
- ♦ One module ~ 250 tpa U₃O₃
- Indicative Capital Cost from initial Scoping ~ U\$135 M for 1,000 tpa U₃O₈ plant (Schauenburg Plant & RIL Circuit)

Project Timeline

Aggressive timetable to production

Conclusions

- DYL has unlocked the potential of the unique, low grade TRS deposit
- The solution is the application of a physical beneficiation process from Schauenburg MAB in Germany
- The newly increased resource base will allow a long life operation at around 500 tpa U₃O₈
- Uranium loaded resin can be sent to existing producers in an offtake contract or ultimately the Omahola Plant
- An offtake contract will allow a faster development time, lower capex requirement and reduce technical risk

A unique deposit treated with a new processing solution is making a silk purse out of a sow's ear!

Contact Details

Greg Cochran

Managing Director

Deep Yellow Limited

Level 1, 329 Hay Street

Subiaco, Western Australia 6008

T +61 8 9286 6999

M +61 409 938-784

F +61 8 9286 6969

Email: greg.cochran@deepyellow.com.au

Email: info@deepyellow.com.au

Website: www.deepyellow.com.au

Appendices

JORC Resource Summary – Namibia (02/12)

Domosit	Cotomomi	Cut-off	Tonnes	U3O8	U3O8	U3O8
Deposit	Category	(ppm U3O8)	(M)	(ppm)	(t)	(MIb)
REPTILE URANIUM	NAMIBIA (NAMIBIA)					
Omahola Project						
INCA ◆	Indicated	250	7	470	3,300	7.2
INCA ◆	Inferred	250	5.4	520	2,800	6.2
Ongolo #	Indicated	250	14.7	410	6,027	13.2
Ongolo #	Inferred	250	5.8	380	2,204	4.8
MS7 #	Indicated	250	3.3	430	1,400	3.2
MS7 #	Inferred	250	2.0	540	1,100.00	2.4
Omahola Project Total			38.2	441	16,831	37.0
TRS Project						
TRS - Sand	Inferred	70	87	148	12,876	28.4
TRS Project Total			87.0	148	12,876	28.4
Tubas-Tumas Pala	eochannel Project					
Tumas ◆	Indicated	200	14.4	366	5,270	11.6
Tumas ◆	Inferred	200	0.4	360	144	0.3
Tubas - Calcrete	Inferred	100	7.4	374	2,767	6.1
Tubas-Tumas Proj	ect Total		22.2	369	8,181	18.0
Aussinanis Project						
Aussinanis •	Indicated	150	5.6	222	1,243	2.7
Aussinanis ♦	Inferred	150	29	240	6,960	15.3
Aussinanis Project Total			34.6	237	8,203	18.0
RUN TOTAL - NAMI	IRIA		182.0	253	46,091	101.4
NOIT TOTAL - NAIVI			102.0	200	TU,U31	101.4

Notes: Figures have been rounded and totals may reflect small rounding errors. XRF chemical analysis unless annotated otherwise.

[♦] eU₃O₈ - equivalent uranium grade as determined by downhole gamma logging.

[#] Combined XRF Fusion Chemical Assays and eU₃O₈ values.

JORC Resource Summary – Aus (02/12)

		Cut-off	Tonnes	U3O8	U3O8	U3O8	
Deposit	Category	(ppm U3O8)	(M)	(ppm)	(t)	(MIb)	
AUSTRALIA							
NAPPERBY PROJECT (NT, AUSTRALIA)							
Napperby	Inferred	200	9.3	359	3,351	7.4	
NAPPERBY TOTAL			9.3	359	3,351	7.4	
MOUNT ISA PROJECT (QLD, AUSTRALIA)							
Mount Isa	Indicated	300	2.2	470	1,050	2.3	
Mount Isa	Inferred	300	2.5	450	1,120	2.5	
MOUNT ISA TOTAL			4.7	460	2,170	4.8	
TOTAL INDICATED RESOURCES		134.2	232	31,166	68.6		
TOTAL INFERRED RESOURCES		61.8	331	20,446	45.0		
TOTAL RESOURCE	S		196.0	263	51,612	113.6	

Notes: Figures have been rounded and totals may reflect small rounding errors. XRF chemical analysis unless annotated otherwise.

- ♦ eU₃O₈ equivalent uranium grade as determined by downhole gamma logging.
- # Combined XRF Fusion Chemical Assays and eU₃O₈ values.

JORC Compliance Statements

Namibia

The information in this report that relates to Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Dr Leon Pretorius, a Fellow of the Australasian Institute of Mining and Metallurgy. Dr Pretorius, Managing Director of Reptile Uranium Namibia (Pty) Ltd has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr Pretorius consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to the **Tubas** Mineral Resource is based on information compiled by Mr Willem H. Kotzé Pr.Sci.Nat MSAIMM. Mr Kotzé is a Member and Professional Geoscientist Consultant of Geomine Consulting Namibia CC. Mr Kotzé has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Kotzé consents to the inclusion in this release of the matters based on his information in the form and context in which it appears.

The information in this report that relates to the **Aussinanis and Tumas** Mineral Resources is based on work completed by Mr Jonathon Abbott who is a full time employee of Hellman and Schofield Pty Ltd and a Member of the Australasian Institute of Mining and Metallurgy. Mr Abbott has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' and as a Qualified Person as defined in the AIM Rules. Mr Abbott consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to the **MS7** Mineral Resource is based on work completed by Mr Neil Inwood; for the **INCA** Mineral Resource on work completed by Mr Neil Inwood and Mr Steve Le Brun – Mr Inwood will supply consent for the Inca Resource; and for the **Ongolo** Mineral Resource on work completed by Mr Neil Inwood and Mr Doug Corley. Mr Inwood is a Fellow of the Australasian Institute of Mining and Metallurgy and Mr Corley is a member of the Australian Institute of Geoscientists. Messrs Inwood and Corley have sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking to qualify as a Competent Persons as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Messrs Inwood and Corley consent to the inclusion in the report of the matters based on his information in the form and context in which it appears. Messrs Inwood and Corley are full-time employees of Coffey Mining.

Where eU₃O₈ values are reported it relates to values attained from radiometrically logging boreholes with Auslog equipment using an A675 slimline gamma ray tool. All probes are calibrated either at the Pelindaba Calibration facility in South Africa or at the Adelaide Calibration facility in South Australia.

JORC Compliance Statements

Queensland

The information in this report that relates to Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Mr Martin Kavanagh, a Fellow of The Australasian Institute of Mining and Metallurgy. Mr Kavanagh is an Executive Director of Deep Yellow Limited and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Kavanagh consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to the Queensland Mineral Resource is based on information compiled by Mr Neil Inwood. Mr Inwood is a Member of The Australasian Institute of Mining and Metallurgy. Mr Inwood is employed by Coffey Mining Pty Ltd and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Inwood consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Northern Territory

The information in this report that relates to the **Napperby Project** Mineral Resource is based on information compiled by Mr Daniel Guibal who is a Fellow (CP) of the Australasian Institute of Mining and Metallurgy. Mr Guibal is a full time employee of SRK Consulting and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Guibal consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Where eU3O8 values are reported it relates to values attained from radiometrically logging boreholes with Auslog equipment using an A675 slimline gamma ray tool. All probes are calibrated either at the Pelindaba Calibration facility in South Africa or at the Adelaide Calibration facility in South Australia.