



### Annual General Meeting of Shareholders

Perth, Western Australia 18 November 2010

Patrick Mutz - Managing Director ASX Code: DYL www.deepyellow.com.au





## Disclaimer



#### Forward Looking Statements

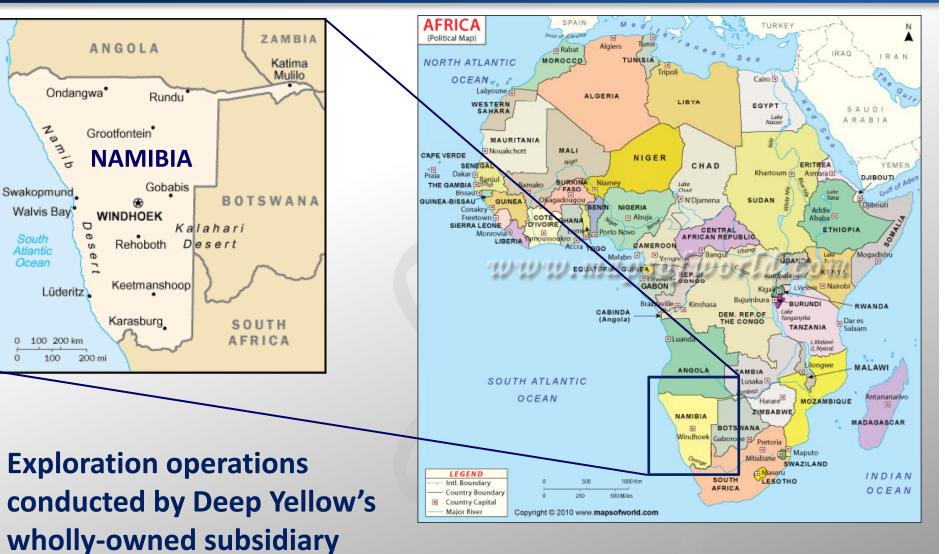
This presentation has been prepared by Deep Yellow Limited ("Deep Yellow"). The information contained in this presentation is of a general nature only and does not constitute and offer to issue, or to arrange an issue, of securities or financial products. The information contained in this presentation is not investment or financial product advice and is not intended to be used as the basis for making an investment decision. This presentation has been prepared without taking into account the investment objectives, financial situation or particular needs of any particular person.

Before making an investment decision on the basis of this presentation, the investor needs to consider, with or without the assistance of a financial advisor, whether the investment is appropriate with due regard for their particular investment needs, objectives and financial circumstances.

This presentation is based on internal company stock exchange announcements, stockbroker research and technical information believed to be reliable. To the maximum extent permitted by law, none of Deep Yellow's Directors, employees or agents, nor any other person accepts any liability, including, without limitation, any liability arising out of fault of negligence, for any loss arising from the use of the information contained in this presentation nor is any obligation assumed to update such information. In particular, no representation or warranty, express or implied, is provided as to its accuracy, completeness or currency of the information contained in this presentation. Deep Yellow accepts no obligation to correct or update the information or opinions expressed in it. Opinions expressed are subject to change without notice and reflect the views of Deep Yellow at the time of presenting.

### Overview




- Company Focus and Vision
- Project Locations & Portfolio Summary
- Corporate Profile
- Nuclear Energy and Uranium Supply/Demand Outlook
- FY 2010 Year in Review
- Current Status
- JORC Resources
- Omahola Pre-Feasibility Study
- Emerging New Projects
- The Next 12 Months



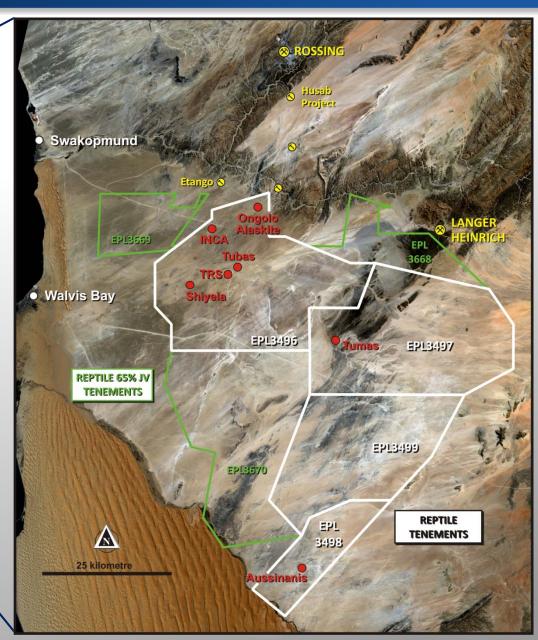
**Deep Yellow Limited (DYL)** is an Australianbased uranium focused company with extensive operations in the southern African nation of **Namibia** and **Australia**.

**DYL i**s targeting becoming a **uranium producer** in Namibia in **2013-14** as it strives to continue to successfully grow its uranium resource base through delineation of previously identified mineralisation, discovery and/or M&A opportunities.

### **Project Locations - Africa**



**Reptile Uranium Namibia (RUN)** 


0

### **Project Locations - Namibia**






Exploration area with substantial uranium resources



### Project Locations – Australia - QLD



with some uranium resources

### Project Locations – Australia - NT



with uranium resources



| Shares on Issue:                 | 1,125.8M       | Unlisted Options | Exercise Price | Expiry Date |
|----------------------------------|----------------|------------------|----------------|-------------|
|                                  |                | 12,500,000       | 59.5 cents     | 30/11/2010  |
|                                  |                | 2,437,500        | 59.6 cents     | 31/12/2010  |
| Unlisted Options:                | 39.8M          | 612,500          | 74.6 cents     | 30/06/2011  |
|                                  |                | 8,462,500        | 27.5 cents     | 30/06/2011  |
| Market Caritaliaatian            | ~~~            | 3,230,000        | 40.0 cents     | 30/06/2011  |
| Market Capitalisation:           | ~A\$304M       | 2,145,000        | 45.0 cents     | 30/06/2011  |
| (at 27.0 cents – 16 Novembe      | er 2010)       | 1,370,000        | 60.0 cents     | 30/06/2011  |
| Nat Cash.                        |                | 1,650,000        | 27.5 cents     | 31/12/2011  |
| Net Cash:                        | A\$22.8M       | 705,000          | 27.5 cents     | 30/06/2012  |
|                                  |                | 2,625,000        | 35.0 cents     | 30/06/2012  |
| (Statistics as at 31 October 201 | 0 or as shown) | 3,425,000        | 45.0 cents     | 30/06/2012  |
|                                  |                | 625,000          | 60.0 cents     | 30/06/2012  |

... No debt and strong shareholder support

## Top Ten Shareholders



|                                       | (As at 9 November | r 2010) |
|---------------------------------------|-------------------|---------|
| Shareholder Name                      | Ordinary Shares   | Percent |
| Paladin Energy Ltd                    | 220,258,461       | 19.56   |
| HSBC Custody Nominees (Aus) Ltd       | 142,091,530       | 12.62   |
| Robert Anthony Healy                  | 72,680,312        | 6.46    |
| Dr Leon Eugene Pretorius              | 66,365,000        | 5.89    |
| Gillian Swaby                         | 40,673,333        | 3.61    |
| Mr Zac Rossi + Mrs Thelma Rossi       | 35,800,000        | 3.18    |
| Robert Anthony + Helen Marie Healy    | 25,437,500        | 2.26    |
| Mervyn Patrick Greene                 | 22,700,000        | 2.02    |
| J P Morgan Nominees Australia Limited | 18,875,536        | 1.68    |
| IJG Securities Pty Ltd                | 17,300,868        | 1.54    |
|                                       |                   |         |
| Totals                                | 662,182,540       | 58.82   |
| Board and Management                  |                   | 11.52   |

### **Board and Management**



### **Board of Directors**

Mr Mervyn Greene – Chairman Investment Banking Mr Patrick Mutz – Managing Director Uranium Development/Production Mr Martin Kavanagh – Executive Director Geology Ms Gillian Swaby – Non-Executive Director Secretarial/Finance/Accounting Mr Tony McDonald – Non-Executive Director (independent) Legal Mr Rudolf Brunovs – Non-Executive Director (independent) Audit/Accounting Mr Mark Pitts – Company Secretary Secretarial/Finance/Accounting


**Executive Management** Combined 75 years uranium experience Over 100 years exploration and mining related experience Mr Patrick Mutz – Chief Executive Officer, Deep Yellow Limited Dr Leon Pretorius – Managing Director, Reptile Uranium Namibia Mr Martin Kavanagh – Exploration Director, Deep Yellow Limited

## Nuclear Energy Industry

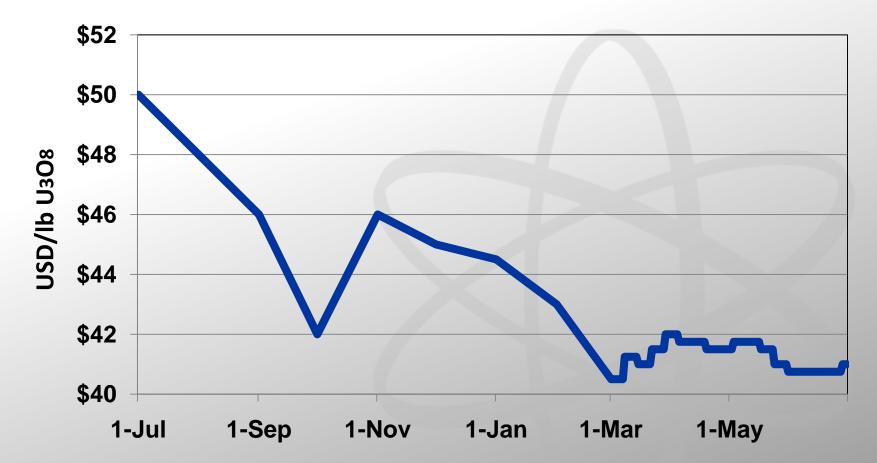


#### **Global Nuclear Reactors** Proposed Ordered or Planned Under Construction Operating Number of Reactors Source: World Nuclear Association and DYL projection

## **Uranium Supply/Demand**



## FY 2010 – Year in Review


- 🎄 🛛 Uranium Price 🔪
- 🏶 Share Price 🔪
- Uranium Resources
- Significant Developments /
- Expenditures --->



## **Uranium Spot Price**



### **Uranium Spot Price (FY 2010)**



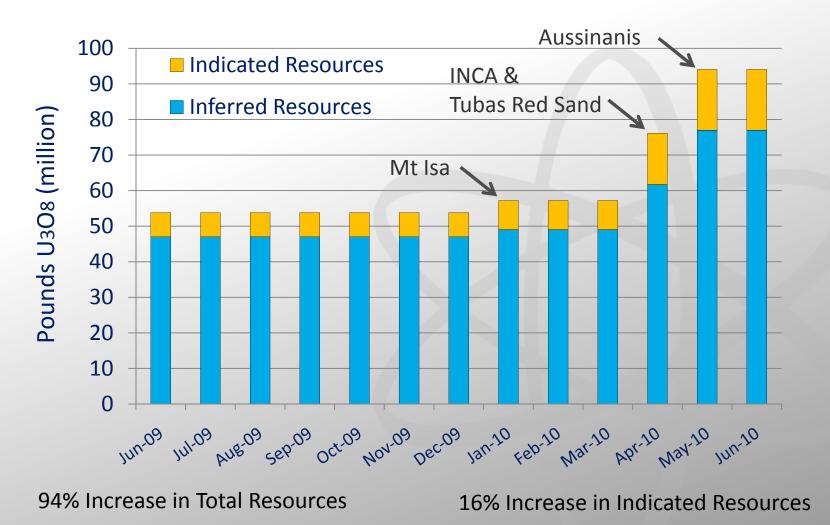
Source: Based on publicly available information from UxC and TradeTech

## DYL Share Price (FY 2010)





## Share Price - Peer Comparison






## **Deep Yellow Uranium Resources**



#### **Uranium Resources in accordance w/JORC Code**



# Significant Developments (FY 2010)

## \$

#### TECHNICAL

- JORC Mineral Resource estimates completed at Mt Isa, INCA, Tubas Red Sand and Aussinanis Projects
- Appointment of SNC-Lavalin as Engineers for Omahola Project Pre-Feasibility Study
- Discovery of Alaskite hosted uranium mineralisation at Ongolo Alaskite project
- Positive evaluation of core samples indicating potential of Shiyela Iron project as standalone magnetite project

# Significant Developments (FY 2010)

## \$}

### CORPORATE

- New Deep Yellow Managing Director (March 2010)
- Adopted formal strategy at Board level to address transition from advanced exploration to producer
- Greater focus on expansion of JORC Resources and project feasibility studies
- Expanded focus on shareholder communications and marketing programme

## FY 2010 Expenditures



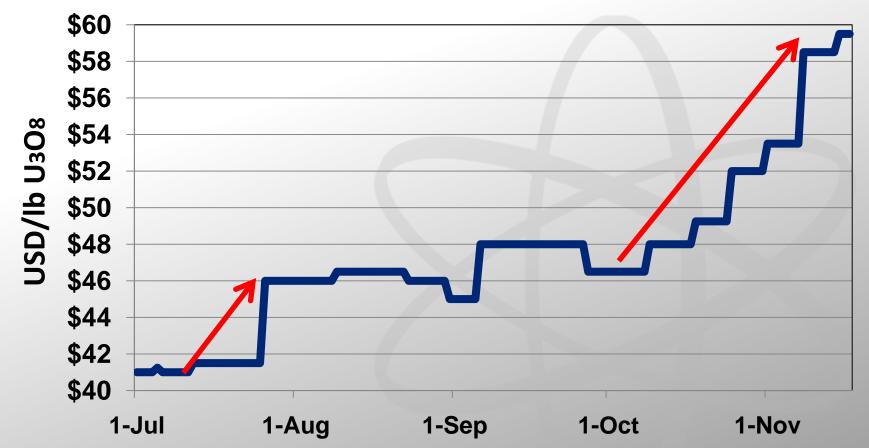
#### **FY 2010 Actual Expenditures**

|                          | <u>A\$M</u> |     |
|--------------------------|-------------|-----|
| Exploration in Namibia   | 11.2        | 66% |
| Exploration in Australia | 5.0         | 30% |
| Corporate                | 2.4         |     |
| Interest                 | <u>-1.7</u> |     |
| Total                    | 16.9        |     |

### **Investment Metrics**



- **FY 2010 Expenditure:** A\$16.9 million
- JORC Resources added: 40.3 million lbs U<sub>3</sub>O<sub>8</sub>
- Unit Cost for Resources added: A\$0.42/lb U3O8
  - DYL Historic Unit Cost for Resources: ~A\$0.70/lb U₃O<sub>8</sub>
- End of FY 2010 Stats:
  - DYL Share price: A\$0.13
  - Market Capitalisation: ~A\$146 million
  - Enterprise Value (EV): ~A\$117 million
  - EV/lb U<sub>3</sub>O<sub>8</sub> of JORC Resources: ~A\$1.21/lb U<sub>3</sub>O<sub>8</sub>
  - This was worst case; current EV/lb U<sub>3</sub>O<sub>8</sub> ~A\$2.80/lb


### **Current Status**



- 🕸 Uranium Price 🖊
- 🕸 Share Price 🖊
- Uranium Resources
- Significant Developments /
- 🏶 Expenditures →



#### **Uranium Spot Price (FY 2011 to-date)**



Source: Based on publicly available information from UxC and TradeTech

# DYL Share Price (6 month)



## **DYL Total Current Uranium Resources**



| JORC Mineral Resource Estimates Summary – October 2010 |                        |                       |               |               |             |              |               |  |  |
|--------------------------------------------------------|------------------------|-----------------------|---------------|---------------|-------------|--------------|---------------|--|--|
| Deposit                                                | Category               | Cut-off<br>(ppm U3O8) | Tonnes<br>(M) | U3O8<br>(ppm) | U3O8<br>(%) | U3O8<br>(t)  | U3O8<br>(MIb) |  |  |
| <b>REPTILE URANIUM</b>                                 | INAMIBIA (NA           | AMIBIA)               |               |               |             |              |               |  |  |
| Omahola Project                                        |                        |                       |               |               |             |              |               |  |  |
| INCA ♦                                                 | Inferred               | 250                   | 5.5           | 445           | 0.044       | 2,449        | 5.4           |  |  |
| INCA 🔶                                                 | Indicated              | 250                   | 9.4           | 385           | 0.039       | 3,628        | 8.0           |  |  |
| Tubas Red Sand 🔶                                       | Inferred               | 100                   | 10.7          | 158           | 0.016       | 1,685        | 3.7           |  |  |
| Tubas Red Sand 🔶                                       | Measured/<br>Indicated | 100                   | 3.2           | 168           | 0.017       | 532          | 1.2           |  |  |
| Omahola Total                                          |                        |                       | 28.8          | 288           | 0.029       | 8,294        | 18.3          |  |  |
| Tubas-Tumas Pala                                       | eochannel Pro          | ject                  |               |               |             |              |               |  |  |
| Tumas 🔶                                                | Inferred               | 100                   | 1.2           | 210           | 0.021       | 252          | 0.6           |  |  |
| Tumas 🔶                                                | Indicated              | 100                   | 42.5          | 216           | 0.022       | 9,180        | 20.2          |  |  |
| Tubas                                                  | Inferred               | 100                   | 77.3          | 228           | 0.023       | 17,620       | 38.9          |  |  |
| Tubas-Tumas Tota                                       | I                      |                       | 121.0         | 224           | 0.022       | 27,052       | 59.7          |  |  |
| Aussinanis Project                                     |                        |                       |               |               |             |              |               |  |  |
| Aussinanis 🔶                                           | Inferred               | 150                   | 29.0          | 240           | 0.024       | 6,960        | 15.3          |  |  |
| Aussinanis 🔶                                           | Indicated              | 150                   | 5.6           | 222           | 0.022       | 1,243        | 2.7           |  |  |
| Ausinanis Total                                        |                        |                       | 34.6          | 237           | 0.024       | 8,203        | 18.1          |  |  |
| RUN TOTAL                                              |                        | 184.4                 | 236           | 0.024         | 43,549      | <b>96</b> .1 |               |  |  |
| NAPPERBY PROJEC                                        | T (NT, AUSTR           | ALIA)                 |               |               |             |              |               |  |  |
| Napperby                                               | Inferred               | 200                   | 9.3           | 359           | 0.036       | 3,351        | 7.4           |  |  |
| NAPPERBY TOTAL                                         |                        |                       | 9.3           | 359           | 0.036       | 3,351        | 7.4           |  |  |
| MOUNT ISA PROJE                                        | CT (QLD, AUS           | TRALIA)               |               |               |             |              |               |  |  |
| Mount Isa                                              | Inferred               | 300                   | 2.0           | 440           | 0.044       | 890          | 2.0           |  |  |
| Mount Isa                                              | Indicated              | 300                   | 1.6           | 400           | 0.040       | 650          | 1.4           |  |  |
| MOUNT ISA TOTAI                                        | L                      |                       | 3.6           | 428           | 0.043       | 1,540        | 3.4           |  |  |
| TOTAL INFERRED RE                                      | SOURCES                |                       | 135.0         | 246           | 0.025       | 33,207       | 73.3          |  |  |
| TOTAL INDICATED R                                      | ESOURCES               |                       | 62.3          | 245           | 0.024       | 15,233       | 33.5          |  |  |
| TOTAL RESOUR                                           | CES                    |                       | 197.3         | 246           | 0.025       | 48,440       | 106.8         |  |  |
| Notes: Figures have be                                 | een rounded and        | totals may reflec     | t small round | ling errors.  |             | 🔶 - eU3O8    |               |  |  |

## **DYL Total Current Uranium Resources**



|                                                              | Deposit<br>REPTILE URANIUM N<br>Dmahola Project<br>NCA<br>NCA<br>Tubas Red Sand<br>Tubas Red Sand<br>Tubas Red Sand<br>Tubas Tumas Palaeou<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas<br>Tumas         | Category<br>AMIBIA (NA<br>Inferred<br>Indicated<br>Inferred<br>Measured/<br>Indicated                            | 250<br>250<br>100<br>100<br>ject<br>100                         | Tonnes<br>(M)<br>5.5<br>9.4<br>10.7<br>3.2<br>28.8 | 445<br>385<br>158<br>168<br>288   | - October<br>U3O8<br>(%)<br>0.044<br>0.039<br>0.016<br>0.017<br>0.029 | 2,449<br>2,449<br>3,628<br>1,685<br>532<br>8,294 | U3O8<br>(MIb)<br>5.4<br>8.0<br>3.7<br>1.2<br>18.3 |       |       |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|-------|-------|
|                                                              | REPTILE URANIUM N<br>Dmahola Project<br>NCA<br>NCA<br>Tubas Red Sand<br>Tubas Red Sand<br>Tu | AMIBIA (NA<br>Inferred<br>Indicated<br>Inferred<br>Measured/<br>Indicated<br>Channel Pro<br>Inferred<br>Inferred | (ppm U3O8)<br>MIBIA)<br>250<br>250<br>100<br>100<br>ject<br>100 | (M)<br>5.5<br>9.4<br>10.7<br>3.2<br>28.8           | (ppm)<br>445<br>385<br>158<br>168 | (%)<br>0.044<br>0.039<br>0.016<br>0.017                               | (t)<br>2,449<br>3,628<br>1,685<br>532            | (MIb)<br>5.4<br>8.0<br>3.7<br>1.2                 |       |       |
|                                                              | REPTILE URANIUM N<br>Dmahola Project<br>NCA<br>NCA<br>Tubas Red Sand<br>Tubas Red Sand<br>Tu | AMIBIA (NA<br>Inferred<br>Indicated<br>Inferred<br>Measured/<br>Indicated<br>Channel Pro<br>Inferred<br>Inferred | AMIBIA)<br>250<br>250<br>100<br>100<br>ject<br>100              | 5.5<br>9.4<br>10.7<br>3.2<br>28.8                  | 445<br>385<br>158<br>168          | 0.044<br>0.039<br>0.016<br>0.017                                      | 2,449<br>3,628<br>1,685<br>532                   | 5.4<br>8.0<br>3.7<br>1.2                          |       |       |
| 0<br> N<br> N<br> T<br> T<br> T<br> T<br> T<br> <br> A<br> A | Dmahola Project<br>NCA ♦<br>NCA ♦<br>Tubas Red Sand ♦<br>Tubas Red Sand ♦<br>Dmahola Total<br>Tubas-Tumas Palaeo<br>Tumas ♦<br>Tumas ♦                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Inferred<br>Indicated<br>Inferred<br>Measured/<br>Indicated<br>Channel Pro<br>Inferred<br>Inferred               | 250<br>250<br>100<br>100<br>ject<br>100                         | 9.4<br>10.7<br>3.2<br>28.8                         | 385<br>158<br>168                 | 0.039<br>0.016<br>0.017                                               | 3,628<br>1,685<br>532                            | 8.0<br>3.7<br>1.2                                 |       |       |
| Ν<br>Ν<br>Τι<br>Τι<br>Τι<br>Τι<br>Τι<br>Τι<br>Α              | NCA ♦<br>NCA ♦<br>Iubas Red Sand ♦<br>Iubas Red Sand ♦<br>Dmahola Total<br>Iubas-Tumas Palaeou<br>Iumas ♦<br>Iumas ♦                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Indicated<br>Inferred<br>Measured/<br>Indicated<br>channel Pro<br>Inferred<br>Indicated                          | 250<br>100<br>100<br>ject<br>100                                | 9.4<br>10.7<br>3.2<br>28.8                         | 385<br>158<br>168                 | 0.039<br>0.016<br>0.017                                               | 3,628<br>1,685<br>532                            | 8.0<br>3.7<br>1.2                                 |       |       |
| Ν<br>Τι<br>Τι<br>Τι<br>Τι<br>Τι<br>Α                         | NCA ♦<br>Tubas Red Sand ♦<br>Tubas Palaeou<br>Tumas ♦<br>Tumas ♦<br>Tubas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Indicated<br>Inferred<br>Measured/<br>Indicated<br>channel Pro<br>Inferred<br>Indicated                          | 250<br>100<br>100<br>ject<br>100                                | 9.4<br>10.7<br>3.2<br>28.8                         | 385<br>158<br>168                 | 0.039<br>0.016<br>0.017                                               | 3,628<br>1,685<br>532                            | 8.0<br>3.7<br>1.2                                 |       |       |
| τι<br>τι<br>Τι<br>τι<br>τι<br>Τι<br>Α                        | ubas Red Sand ♦<br>ubas Red Sand ♦<br>Dmahola Total<br>ubas-Tumas Palaeo<br>umas ♦<br>umas ♦<br>ubas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Inferred<br>Measured/<br>Indicated<br>channel Pro<br>Inferred<br>Indicated                                       | 100<br>100<br>ject<br>100                                       | 10.7<br>3.2<br>28.8                                | 158<br>168                        | 0.016<br>0.017                                                        | 1,685<br>532                                     | 3.7<br>1.2                                        |       |       |
| τι<br>Ο<br>Τι<br>τι<br>Τι<br>Α                               | ubas Red Sand ♦<br>Omahola Total<br>Ubas-Tumas Palaeo<br>umas ♦<br>umas ♦<br>umas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Measured/<br>Indicated<br>channel Pro<br>Inferred<br>Indicated                                                   | 100<br>ject<br>100                                              | 3.2<br>28.8                                        | 168                               | 0.017                                                                 | 532                                              | 1.2                                               |       |       |
| 0<br>Ti<br>Tı<br>Tı<br>Aı                                    | ubas Red Sand ♦<br>Dmahola Total<br>Iubas-Tumas Palaeo<br>Iumas ♦<br>Iumas ♦                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Indicated<br>channel Pro<br>Inferred<br>Indicated                                                                | ject<br>100                                                     | 28.8                                               |                                   |                                                                       |                                                  |                                                   |       |       |
| τι<br>τι<br>τι<br>Αι                                         | ubas-Tumas Palaeo<br>umas ♦<br>umas ♦<br>ubas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Inferred<br>Indicated                                                                                            | 100                                                             |                                                    | 288                               | 0.029                                                                 | 8,294                                            | 18.3                                              |       |       |
| τι<br>τι<br>Τι<br>Αι                                         | umas ♦<br>umas ♦<br>ubas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inferred<br>Indicated                                                                                            | 100                                                             |                                                    |                                   |                                                                       |                                                  |                                                   |       |       |
| τι<br>Τι<br>Α<br>Α                                           | umas ♦<br>ubas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Indicated                                                                                                        |                                                                 | 1.2                                                |                                   |                                                                       |                                                  |                                                   |       |       |
|                                                              | ubas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                  | 100                                                             | 1.2                                                | 210                               | 0.021                                                                 | 252                                              | 0.6                                               |       |       |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Inforred                                                                                                         | 100                                                             | 42.5                                               | 216                               | 0.022                                                                 | 9,180                                            | 20.2                                              |       |       |
| A                                                            | ubas-Tumas Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | meneu                                                                                                            | 100                                                             | 77.3                                               | 228                               | 0.023                                                                 | 17,620                                           | 38.9                                              |       |       |
| А                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  | •                                                               | 121.0                                              | 224                               | 0.022                                                                 | 27,052                                           | 59.7                                              |       |       |
| А                                                            | Aussinanis Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                                                 |                                                    |                                   |                                                                       |                                                  |                                                   |       |       |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Inferred                                                                                                         | 150                                                             | 29.0                                               | 240                               | 0.024                                                                 | 6,960                                            | 15.3                                              |       |       |
| A                                                            | ussinanis 🔶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Indicated                                                                                                        | 150                                                             | 5.6                                                | 222                               | 0.022                                                                 | 1,243                                            | 2.7                                               |       |       |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                 |                                                    |                                   |                                                                       | 1 1                                              |                                                   | -     |       |
| N TOTAL                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                 | 184.4                                              | 2                                 | 36                                                                    | 0.024                                            | 43,5                                              | 549 🧲 | 96.1  |
| N                                                            | APPERBY PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (NT, AUSTR/                                                                                                      | ALIA)                                                           |                                                    |                                   |                                                                       |                                                  |                                                   |       |       |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Inferred                                                                                                         | 200                                                             | 9.3                                                | 359                               | 0.036                                                                 | 3,351                                            | 7.4                                               |       |       |
| N                                                            | APPERBY TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |                                                                 | 9.3                                                | 359                               | 0.036                                                                 | 3,351                                            | 7.4                                               |       |       |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                 |                                                    |                                   |                                                                       |                                                  |                                                   |       |       |
| N                                                            | MOUNT ISA PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | " (QLD, AUS                                                                                                      | TRALIA)                                                         |                                                    |                                   |                                                                       |                                                  |                                                   |       |       |
| 1                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                 |                                                    |                                   |                                                                       | · ·                                              |                                                   |       |       |
| TAL INFERRED RE                                              | SOURCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                 | 135.0                                              |                                   | 246                                                                   | 0.025                                            | 33,2                                              | 207   | 73.3  |
| TAL INDICATED R                                              | TAL INDICATED RESOURCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                 | 62.3                                               |                                   | 245                                                                   | 0.024                                            | 15,                                               | 233   | 33.5  |
| OTAL RESOUR                                                  | CES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                 | 197.3                                              | 2                                 | 46                                                                    | 0.025                                            | 48,                                               | 440 🌔 | 106.8 |

## **DYL Current High-Grade Resources**

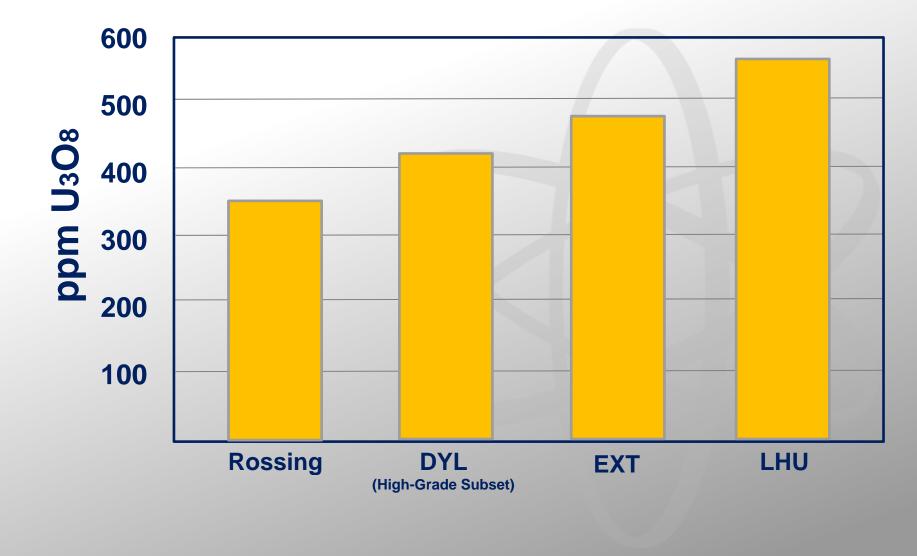


|            | JORC Mineral Resource Estimates Summary – October 2010 |                                  |                       |               |               |             |        |             |               |     |      |
|------------|--------------------------------------------------------|----------------------------------|-----------------------|---------------|---------------|-------------|--------|-------------|---------------|-----|------|
|            | Deposit                                                | Category                         | Cut-off<br>(ppm U3O8) | Tonnes<br>(M) | U3O8<br>(ppm) | U3O:<br>(%) | 8      | U3O8<br>(t) | U3O8<br>(MIb) |     |      |
|            | REPTILE URANIUM                                        | NAMIBIA (N                       | AMIBIA)               |               |               |             |        |             |               |     |      |
|            | Omahola Project                                        |                                  |                       |               |               |             |        |             |               |     |      |
|            | INCA ♦                                                 | Inferred                         | 250                   | 5.5           | 445           | 0.044       | 1      | 2,449       | 5.4           |     |      |
|            | INCA ♦                                                 | Indicated                        | 250                   | 9.4           | 385           | 0.039       | 9      | 3,628       | 8.0           |     |      |
|            | <mark>Omahola Total</mark>                             |                                  |                       | 15.0          | 405           | 0.04:       | 1      | 6,077       | 13.4          |     |      |
|            | Tubas-Tumas Palaeochannel Project (High-grade subset)  |                                  |                       |               |               |             |        | <b>_</b>    |               |     |      |
|            | Tumas 🔶                                                | Inferred                         | 200                   | 0.4           | 360           | 0.036       | 5      | 144         | 0.3           |     |      |
|            | Tumas 🔶                                                | Indicated                        | 200                   | 14.4          | 366           | 0.037       | 7      | 5,270       | 11.6          |     |      |
|            | Tubas                                                  | Inferred                         | 200                   | 22.8          | 455           | 0.046       | 5      | 10,369      | 22.9          |     |      |
|            | Tubas-Tumas Total                                      | subset)                          | 37.6                  | 420           | 0.042         | 2           | 15,783 | 34.8        |               |     |      |
|            | RUN TOTAL (High-g                                      |                                  | 52.6                  | 416           | 0.042         | 2           | 21,860 | 48.2        |               |     |      |
|            | NAPPERBY PROJEC                                        | NAPPERBY PROJECT (NT, AUSTRALIA) |                       |               |               |             |        |             |               |     |      |
|            | Napperby                                               | Inferred                         | 200                   | 9.3           | 359           | 0.036       | 5      | 3,351       | 7.4           |     |      |
|            | NAPPERBY TOTAL                                         |                                  |                       | 9.3           | 359           | 0.03        | 6      | 3,351       | 7.4           |     |      |
|            | MOUNT ISA PROJE                                        | CT (QLD, AUS                     | TRALIA)               |               |               |             |        |             |               |     |      |
|            | Mount Isa                                              | Inferred                         | 300                   | 2.0           | 440           | 0.044       | 1      | 890         | 2.0           |     |      |
|            | Mount Isa                                              | Indicated                        | 300                   | 1.6           | 400           | 0.040       | )      | 650         | 1.4           |     |      |
|            | MOUNT ISA TOTAL                                        |                                  |                       | 26            | 179           | 0.043       | 2      | 1 5/0       | 2 /           |     |      |
| TAL INFERR | ED RESOURCES                                           | 12.                              |                       | 40.0          | 43            | 30          | (      | 0.043       | 17,203        | Т   | 38.0 |
| TAL INDICA | TED RESOURCES                                          |                                  |                       | 25.4          | 37            | 76          | (      | 0.038       | 9,548         | 十   | 21.0 |
| DTAL RESC  | URCES (High-                                           | grade su                         | bset)                 | 65.4          | 4(            | )9          |        | ).041       | 26,75         | 1 🤇 | 59.0 |

## **DYL Current High-Grade Resources**



| JORC Mineral Resource Estimates Summary – October 2010 |              |                       |               |               |             |             |               |  |  |  |
|--------------------------------------------------------|--------------|-----------------------|---------------|---------------|-------------|-------------|---------------|--|--|--|
| Deposit                                                | Category     | Cut-off<br>(ppm U3O8) | Tonnes<br>(M) | U3O8<br>(ppm) | U3O8<br>(%) | U3O8<br>(t) | U3O8<br>(Mlb) |  |  |  |
| REPTILE URANIUM NAMIBIA (NAMIBIA)                      |              |                       |               |               |             |             |               |  |  |  |
| Omahola Project                                        |              |                       |               |               |             |             |               |  |  |  |
| INCA 🔶                                                 | Inferred     | 250                   | 5.5           | 445           | 0.044       | 2,449       | 5.4           |  |  |  |
| INCA 🔶                                                 | Indicated    | 250                   | 9.4           | 385           | 0.039       | 3,628       | 8.0           |  |  |  |
| Omahola Total                                          |              |                       | 15.0          | 405           | 0.041       | 6,077       | 13.4          |  |  |  |
| Tubas-Tumas Palaeo                                     | channel Pro  | ject (High-grad       | de subset)    |               |             |             |               |  |  |  |
| Tumas 🔶                                                | Inferred     | 200                   | 0.4           | 360           | 0.036       | 144         | 0.3           |  |  |  |
| Tumas 🔶                                                | Indicated    | 200                   | 14.4          | 366           | 0.037       | 5,270       | 11.6          |  |  |  |
| Tubas                                                  | Inferred     | 200                   | 22.8          | 455           | 0.046       | 10,369      | 22.9          |  |  |  |
| Tubas-Tumas Total (                                    | High-grade s | subset)               | 37.6          | 420           | 0.042       | 15,783      | 34.8          |  |  |  |
| RUN TOTAL (High-gr                                     | ade subset)  |                       | 52.6 🤇        | 416           | 0.042       | 21,860      | 48.2          |  |  |  |


Anticipated additions to high-grade resources:

- INCA (including INCA-Type)
- Ongolo Alaskite
- Tumas Zone 3 (currently Exploration Target Range)

## Uranium Grade; How important?



### **Uranium Grades in Namibia**



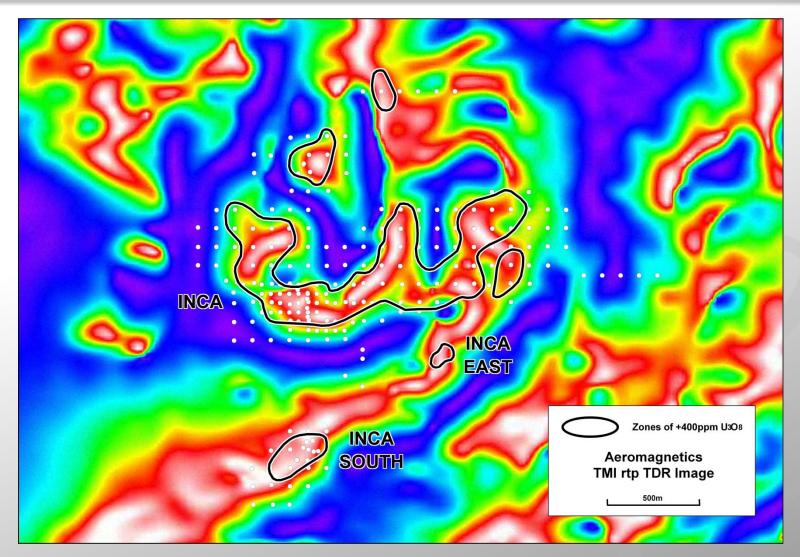


The **Omahola Project** is the subject of a **Pre-Feasibility Study (PFS)** being conducted by **SNC Lavalin** – Johannesburg

Project uranium resources currently from two deposits:

- INCA deposit unique uranium and magnetite mineralisation
- Tubas Red Sand (TRS) deposit subsurface red sands with uranium mineralisation
- Total initial uranium resources in accordance with JORC Code
  - > 28.8 M tonnes at 288 ppm  $eU_3O_8$  for 8,294 tonnes (**18.3 Mlbs**)  $eU_3O_8$
  - Potential for additional resources at INCA and TRS deposits as well as at Ongolo Alaskite and recently identified INCA-Type mineralisation

## Omahola Project – INCA Deposit

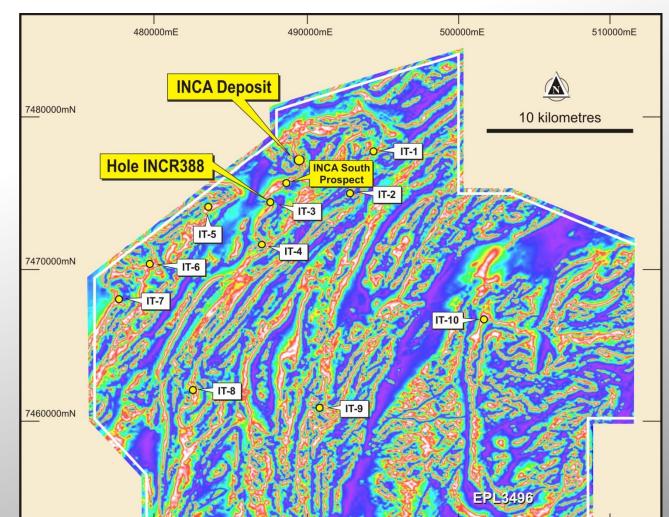



#### **INCA** deposit

- Unique uranium and magnetite mineralisation
- Shallow mineralisation from ~20 metres depth
  - Initial JORC Resource estimate 15.0 M tonnes at **405 ppm eU3O8** containing **13.4 M lbs eU3O8** at 250 ppm cut-off grade (60% as Indicated Resources)
    - Magnetite can potentially be separated during processing and sold as **by-product** to other uranium producers with acid leach circuits

## New Geophysical Model for INCA






Total Magnetic Intensity (TMI) reduced to pole Tilt Angle Derivative aeromagnetic image with highest magnetic intensity in white

## New Geophysical Model for INCA

#### ASX announcement 17 November 2010

- New INCA-Type targets identified (IT-1 thru IT-10)
- IT-3 was first target to be reconnaissance drill tested
- Drillhole INCR388 at IT-3 intersected 11 metres at 1,064 ppm eU3O8 from 84 metres
- INCA South Prospect drill tested in 2008 as INCA 'look-alike' with drillhole
  INCD15 intersecting 27 metres at 1,471 ppm U3O8 from 39 metres depth
- Other IT targets to be drill tested systematically





## Omahola Project – TRS Deposit



### **Tubas Red Sand (TRS) deposit**

- Subsurface red sand with uranium mineralisation
- Initial JORC Resource 13.8 M tonnes at 160 ppm eU3O8 containing 4.9 M lbs eU3O8 at 100 ppm cut-off grade
- From surface to ~13 metres depth
  - Accumulated sand deposit amenable to low cost mining techniques
  - Amenable to beneficiation
    - Preliminary tests indicate 90% of uranium can be captured in 22% of mass, increasing grade to over 500 ppm U3O8
  - Beneficiation pilot plant from Schauenburg (Germany) ordered and in transit to Namibia for testing
  - Drilling suggests red sand occurs adjacent to and may potentially flank 30 km Tubas-Tumas palaeochannel

## Omahola Project - PFS

# \$}}s

### **Pre-Feasibility Study (PFS)**

- Study launched in March 2010
- SNC-Lavalin lead engineering consultant and Study Manager
- Metallurgical testwork by **Mintek** Johannesburg
- Draft PFS anticipated in December 2010
- Draft Environmental Reports anticipated in December 2010



#### **Forward Looking Targets for Project Development**

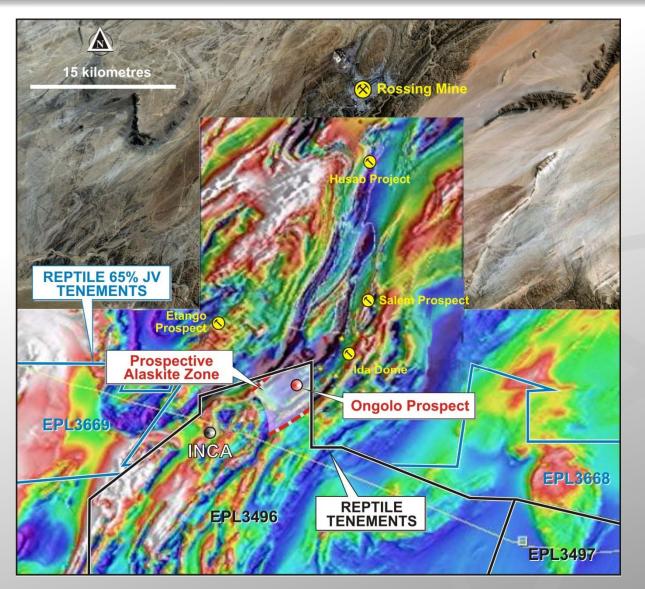
- PFS March-December 2010
- Definitive Feasibility Study (DFS); targeting 2011\*
- Environmental approvals and licensing; targeting 2011-2012\*
- Project development and construction; targeting 2012-2013\*
- Start of mining and ore processing; targeting 2013-2014\*

\* -Contingent on successful completion of prior steps

## **Emerging New Projects in Namibia**



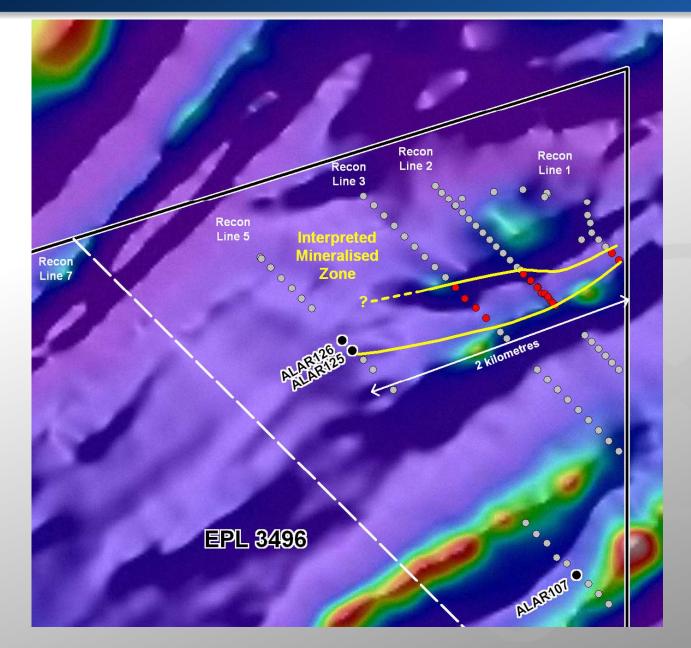
#### Ongolo Alaskite Project


- Discovery of high-grade (400+ ppm cU<sub>3</sub>O<sub>8</sub>) alaskite hosted uranium mineralisation announced April 2010
- > Interpreted mineralised zone now up to **2 kilometres in strike length** with 500-600 ppm  $cU_3O_8$  on Recon Line 5 announced 23 August 2010

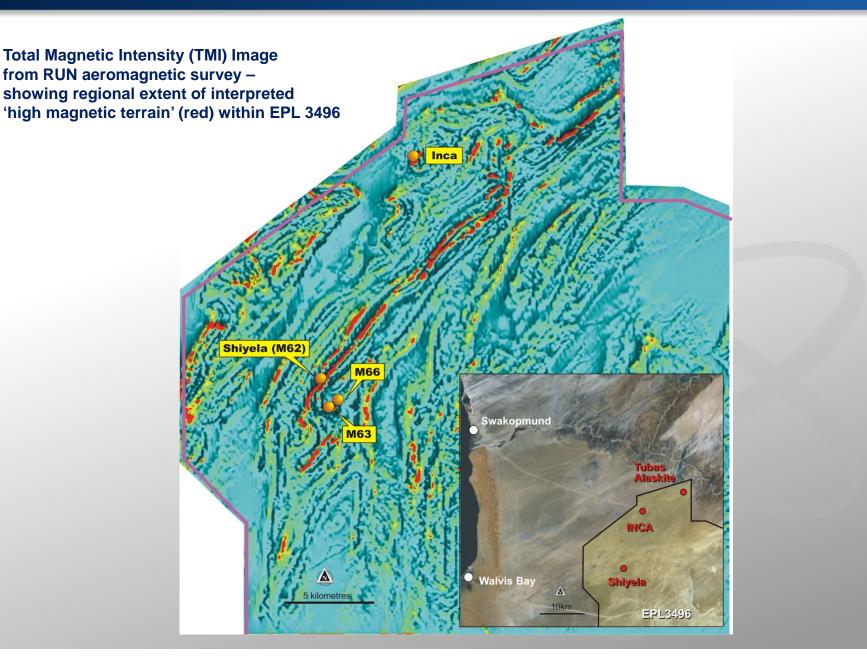
#### **Shiyela Iron (Magnetite) Project**

- Evaluation of magnetite cores sample yielded high-grade iron magnetite concentrate with low impurities
- Follow-on drilling confirmed and expanded width of magnetite mineralisation up to 400 metres across strike with greater amounts of massive magnetite
- Strike length up to 8 kilometres and project located ~30 kilometres from deep sea port at Walvis Bay

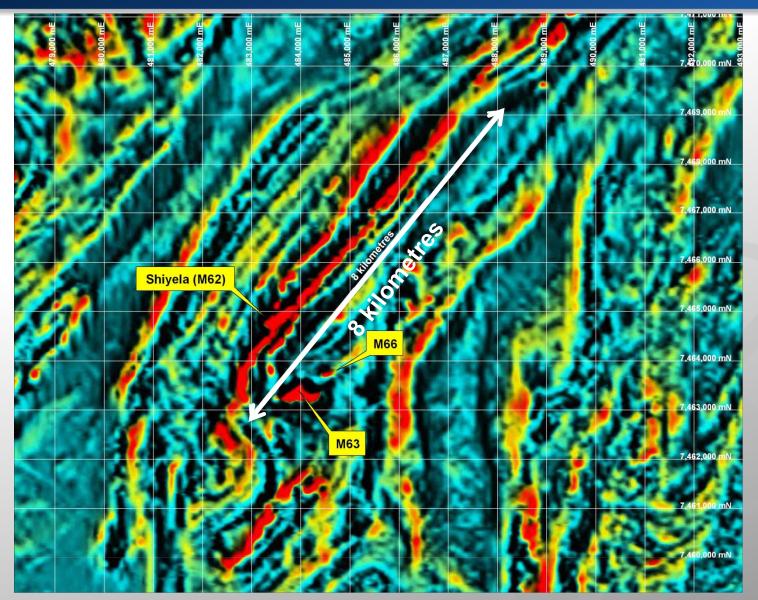
### New Projects – Ongolo Alaskite







Regional aeromagnetic image with Tubas Alaskite Prospect relative to known uranium mineralisation

## New Projects – Ongolo Alaskite






# New Projects – Shiyela Iron Project



### New Projects – Shiyela Iron Project



Total Magnetic Intensity (TMI) Image from RUN aeromagnetic survey - showing regional extent of interpreted 'high magnetic terrain' (red) within EPL 3496

#### The Next 12 Months



- Continue to expand JORC Mineral Resources base
- Complete PFS on Omahola; embark on DFS
- Consideration of Scoping Study or PFS on Tubas-Tumas palaeochannel high-grade resource subset
- Advance drilling on emerging new projects
  - Preliminary Mineral Resource estimate on Ongolo Alaskite
  - Preliminary Scoping Study and Mineral Resource estimate on Shiyela Iron project
- Major focus on marketing and investor relations
- Eyes wide open for M&A opportunities

#### **Contact Details**



Patrick Mutz Managing Director

Deep Yellow Limited Level 1, 329 Hay Street Subiaco, Western Australia 6008 T +61 8 9286 6999 F +61 8 9286 6969

Email: info@deepyellow.com.au Website: www.deepyellow.com.au



#### INCA and Tubas Red Sand deposits

The information in this report that relates to the **Mineral Resource for the INCA and Tubas Red Sand deposits** is based on information compiled by **Mr Mike Hall**, who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Hall is Consulting Geologist Resources with **The MSA Group** and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Mineral Resources and Reserves'. Mr Hall consents to the inclusion in this report of the matters based on his information in the form and context in which it appears. Information in this report has also been verified by **Mr Mike Venter**, who is a member of the South African Council for Natural and Scientific Professions (SACNASP), a "Recognised Overseas Professional Organization" ('ROPO'). Mr Venter is Regional Consulting Geologist, with **The MSA Group** and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Mineral Resources and Reserves'. Mr Venter has visited the project sites to review drilling, sampling and other aspects of the work relevant to this report and consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report relating to **Exploration Results for the INCA and Tubas Red Sand deposits** is based on information compiled by **Dr Leon Pretorius** who is a Fellow of the Australasian Institute of Mining and Metallurgy. Dr Pretorius is a full-time employee of Deep Yellow Limited and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserve'. Dr Pretorius consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Where eU3O8 is reported it relates to values attained from radiometrically logging boreholes with Auslog equipment using an A675 slimline gamma ray tool. All probes are calibrated either at the Pelindaba Calibration facility in South Africa or at the Adelaide Calibration facility in South Australia.



#### Aussinanis and Tumas deposits

The information in this report that relates **Mineral Resource** estimation for **Aussinanis and Tumas** is based on work completed by **Mr Jonathon Abbott** who is a full time employee of **Hellman and Schofield Pty Ltd** and a Member of the Australasian Institute of Mining and Metallurgy. Mr Abbott has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' and as a Qualified Person as defined in the AIM Rules. Mr Abbott consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to **Gamma Logging Results and their conversion to Equivalent Uranium Grades** for **Tumas** is based on information compiled by **Dr Doug Barrett** a Consulting Geophysicist and Member of the Australian Institute of Geoscientists. Dr Barrett has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr Barrett consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to **data quality, including the accuracy and reliability of gamma logging results, bulk densities, cut off grades and comments on the resource estimates** for **Aussinanis** is based on information compiled by **Dr Leon Pretorius** a Fellow of The Australasian Institute of Mining and Metallurgy. Dr Pretorius is a full-time employee of Deep Yellow Limited and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr Pretorius consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.



#### Tubas deposit

The information in this report that relates **Mineral Resource** estimation for **Tubas** is based on work completed by **Mr Willem H. Kotzé Pr. Sci. Nat MSAIMM.** Mr Kotzé who is a full time employee of **Hellman and Schofield Pty Ltd** and a Member of the Australasian Institute of Mining and Metallurgy. Mr Kotzé has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' and as a Qualified Person as defined in the AIM Rules. Mr Kotzé consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to **Exploration Results, Mineral Resources or Ore Reserves** for **Tubas** is based on information compiled by **Dr Leon Pretorius** a Fellow of The Australasian Institute of Mining and Metallurgy. Dr Pretorius is a full-time employee of Deep Yellow Limited and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr Pretorius consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Where eU3O8 is reported it relates to values attained from radiometrically logging boreholes with Auslog equipment using an A675 slimline gamma ray tool. All probes are calibrated either at the Pelindaba Calibration facility in South Africa or at the Adelaide Calibration facility in South Australia.



#### **Mount Isa Projects**

The information in this report that relates to **Mineral Resource** estimation for the **Mount Isa Projects** is based on work compiled by **Mr Neil Inwood**, a Member of the Australasian Institute of Mining and Metallurgy. Mr Inwood is employed by Coffey Mining Pty Ltd and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Inwood consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to **Exploration Results, Mineral Resources or Ore Reserves** for the **Mount Isa Projects** is based on information compiled by **Dr Leon Pretorius** a Fellow of The Australasian Institute of Mining and Metallurgy. Dr Pretorius is a full-time employee of **Deep Yellow Limited** and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr Pretorius consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Where eU3O8 is reported it relates to values attained from radiometrically logging boreholes with Auslog equipment using an A675 slimline gamma ray tool. All probes are calibrated either at the Pelindaba Calibration facility in South Africa or at the Adelaide Calibration facility in South Australia.



#### Napperby Project

The information in this report that relates to **Mineral Resource** estimation for the **Napperby Project** is based on information compiled by **Mr Daniel Guibal** who is a Fellow (CP) of the Australasian Institute of Mining and Metallurgy. Mr Guibal is a full time employee of **SRK Consulting** and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Guibal consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to **Exploration Results** for the **Napperby Project** is based on information compiled by **Dr David Rawlings** who is a Member of The Australasian Institute of Mining and Metallurgy. Dr Rawlings is a full-time employee of **Toro Energy Limited** and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr Rawlings consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to **Disequilibrium Results** for the **Napperby Project** is based on information compiled by **Mr David Wilson BSc MSc** who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Wilson is a full-time employee of **3D Exploration Limited**, a consultant to Toro and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Wilson consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.